Skip to main content

Advertisement

Log in

Epac: effectors and biological functions

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Epac1 (also known as cAMP-GEF-I) and Epac2 (also known as cAMP-GEF-II) are cyclic AMP-activated guanine nucleotide exchange factors for Ras-like GTPases. Since their discovery about 10 years ago, it is now accepted that Epac proteins are novel cAMP sensors that regulate several pivotal cellular processes, including calcium handling, cell proliferation, cell survival, cell differentiation, cell polarization, cell–cell adhesion events, gene transcription, secretion, ion transport, and neuronal signaling. Recent studies even indicated that Epac proteins might play a role in the regulation of inflammation and the development of cardiac hypertrophy. Meanwhile, a plethora of diverse effectors of Epac proteins have been assigned, such as Ras and Rho GTPases, phospholiase C-ɛ, phospholipase D, mitogen-activated protein kinases, protein kinase B/Akt, ion channels, secretory-granule associated proteins and regulators of the actin-microtubule network, the latter probably involved in the spatiotemporal dynamics of Epac-related signaling. This review highlights multi-faceted effectors and diverse biological functions driven by Epac proteins that might explain certain controversial signaling properties of cAMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ada-Nguema AS, Xenias H, Hofman JM, Wiggins CH, Sheetz MP, Keely PJ (2006) The small GTPase R-Ras regulates organization of actin and drives membrane protrusions through the activity of PLCe. J Cell Sci 119:1307–1319

    PubMed  CAS  Google Scholar 

  • Aromataris EC, Roberts ML, Barritt GJ, Rychkov GY (2006) Glucagon activates Ca2 + and Cl- channels in rat hepatocytes. J Physiol 573:611–625

    PubMed  CAS  Google Scholar 

  • Augustine GJ, Burns ME, DeBello WM, Pettit DL, Schweizer FE (1996) Exocytosis: proteins and perturbations. Annu Rev Pharmacol Toxicol 36:659–701

    PubMed  CAS  Google Scholar 

  • Barg S, Huang P, Eliasson L, Nelson DJ, Obermuller S, Rorsman P, Thevenod F, Renstrom E (2001) Priming of insulin granules for exocytosis by granular Cl(-) uptake and acidification. J Cell Sci 114:2145–2154

    PubMed  CAS  Google Scholar 

  • Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282:1141–1144

    PubMed  CAS  Google Scholar 

  • Beavo JA, Brunton LL (2002) Cyclic nucleotide research—still expanding after half a century. Nat Rev Mol Cell Biol 3:710–718

    PubMed  CAS  Google Scholar 

  • Bernards A, Settleman J (2004) GAP control: regulating the regulators of small GTPases. Trends Cell Biol 14:377–385

    PubMed  CAS  Google Scholar 

  • Bernards A, Settleman J (2005) GAPs in growth factor signalling. Growth Factors 23:143–149

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2004) Calcium signalling: Dynamics,Homeostasis and Remodelling. Nat Rev Mol Cell Biol 4:517–529

    Google Scholar 

  • Birukova AA, Zagranichnaya T, Fu P, Alekseeva E, Chen W, Jacobson JR, Birukov KG (2007) Prostaglandins PGE(2) and PGI(2) promote endothelial barrier enhancement via PKA- and Epac1/Rap1-dependent Rac activation. Experiment Cell Res 313:2504–2520

    CAS  Google Scholar 

  • Borland G, Gupta M, Magiera MM, Rundell CJ, Fuld S, Yarwood SJ (2006) Microtubule-associated protein 1B-light chain 1 enhances activation of Rap1 by exchange protein activated by cyclic AMP but not intracellular targeting. Mol Pharmacol 69:374–384

    PubMed  CAS  Google Scholar 

  • Bos JL (2003) Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 4:733–738

    PubMed  CAS  Google Scholar 

  • Bos JL (2005) Linking Rap to cell adhesion. Curr Opin Cell Biol 17:123–128

    PubMed  CAS  Google Scholar 

  • Bos JL (2006) Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci 31:680–686

    PubMed  CAS  Google Scholar 

  • Bos JL, de RJ, Reedquist KA (2001) Rap1 signalling: adhering to new models. Nat Rev Mol Cell Biol 2:369–377

    PubMed  CAS  Google Scholar 

  • Bos JL, de BK, Enserink J, Kuiperij B, Rangarajan S, Rehmann H, Riedl J, de RJ, van MF, Zwartkruis F (2003) The role of Rap1 in integrin-mediated cell adhesion. Biochem Soc Trans 31:83–86

    PubMed  CAS  Google Scholar 

  • Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: Critical elements in the control of small G proteins. Cell 129:865–877

    PubMed  CAS  Google Scholar 

  • Bourguignon LYW, Gilad E, Brightman A, Diedrich F, Singleton P (2006) Hyaluronan-CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase C-e-Ca2 + signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells. J Biol Chem 281:14026–14040

    PubMed  CAS  Google Scholar 

  • Brennesvik EO, Ktori C, Ruzzin J, Jebens E, Shepherd PR, Jensen J (2005) Adrenaline potentiates insulin-stimulated PKB activation via cAMP and Epac: implications for cross talk between insulin and adrenaline. Cell Signal 17:1551–1559

    PubMed  CAS  Google Scholar 

  • Bryn T, Mahic M, Enserink JM, Schwede F, Aandahl EM, Tasken K (2006) The cyclic AMP-Epac1-Rap1 pathway is dissociated from regulation of effector functions in monocytes but acquires immunoregulatory function in mature macrophages. J Immunol 176:7361–7370

    PubMed  CAS  Google Scholar 

  • Bunney TD, Katan M (2006) Phospholipase C epsilon: linking second messengers and small GTPases. Trends Cell Biol 16:640–648

    PubMed  CAS  Google Scholar 

  • Caron E (2003) Cellular functions of the Rap1 GTP-binding protein: a pattern emerges. J Cell Sci 116:435–440

    PubMed  CAS  Google Scholar 

  • Cass LA, Summers SA, Prendergast GV, Backer JM, Birnbaum MJ, Meinkoth JL (1999) Protein kinase A-dependent and -independent signaling pathways contribute to cyclic AMP-stimulated proliferation. Mol Cell Biol 19:5882–5891

    PubMed  CAS  Google Scholar 

  • Chang L, Goldman RD (2004) Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol 5:601–613

    PubMed  CAS  Google Scholar 

  • Chen C, Koh AJ, Datta NS, Zhang J, Keller ET, Xiao G, Franceschi RT, D’Silva NJ, McCauley LK (2004) Impact of the mitogen-activated protein kinase pathway on parathyroid hormone-related protein actions in osteoblasts. J Biol Chem 279:29121–29129

    PubMed  CAS  Google Scholar 

  • Choi SC, Han JK (2005) Rap2 is required for Wnt/beta-catenin signaling pathway in Xenopus early development. EMBO J 24:985–996

    PubMed  CAS  Google Scholar 

  • Christensen AE, Selheim F, de Rooji J, Dremier S, Schwede F, Dao KK, Martinez A, Maenhaut C, Bos JL, Genieser H-G, Doskeland SO (2003) cAMP analog mapping of Epac 1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. J Biol Chem 278:35394–35402

    PubMed  CAS  Google Scholar 

  • Cullen PJ, Lockyer PJ (2002) Integration of calcium and ras signalling. Nat Rev Mol Cell Biol 3:339–348

    PubMed  CAS  Google Scholar 

  • Cullere X, Shaw SK, Andersson L, Hirahashi J, Luscinskas FW, Mayadas TN (2005) Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood 105:1950–1955

    PubMed  CAS  Google Scholar 

  • Dao KK, Teigen K, Kopperud R, Hodneland E, Schwede F, Christensen AE, Martinez A, Doskeland SO (2006) Epac1 and cAMP-dependent protein kinase holoenzyme have similar cAMP affinity, but their cAMP domains have distinct structural features and cyclic nucleotide recognition. J Biol Chem 281:21500–21511

    PubMed  CAS  Google Scholar 

  • de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477

    PubMed  Google Scholar 

  • de Rooij J, Rehmann H, van TM, Cool RH, Wittinghofer A, Bos JL (2000) Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J Biol Chem 275:20829–20836

    PubMed  Google Scholar 

  • Del Pozo MA, Kiosses WB, Alderson NB, Meller N, Hahn KM, Schwartz MA (2002) Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nat Cell Biol 4:232–239

    PubMed  CAS  Google Scholar 

  • Del Pozo MA, Alderson NB, Kiosses WB, Chiang H-H, Anderson RGW, Schwartz MA (2004) Integrins regualte Rac targeting by internalization of membrane domains. Science 303:839–842

    PubMed  CAS  Google Scholar 

  • DiPilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci 101:16513–16518

    PubMed  CAS  Google Scholar 

  • Diviani D, Scott JD (2001) AKAP signalling complexes at the cytoskeleton. J Cell Sci 114:1431–1437

    PubMed  CAS  Google Scholar 

  • Dodge-Kafka KL, Soughayer J, Pare GC, Carlisle Michel JJ, Langeberg LK, Kapiloff MS, Scott JD (2005) The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 437:574–578

    PubMed  CAS  Google Scholar 

  • Enserink JM, Christensen AE, de RJ, van TM, Schwede F, Genieser HG, Doskeland SO, Blank JL, Bos JL (2002) A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 4:901–906

    PubMed  CAS  Google Scholar 

  • Evellin S, Nolte J, Tysack K, vom Dorp F, Thiel M, Oude Weernink PA, Jakobs KH, Webb EJ, Lomasney JW, Schmidt M (2002) Stimulation of phospholipase C-e by the M3 muscarinic acetylcholine receptor mediated by cyclic AMP and the GTPase Rap2B. J Biol Chem 277:16805–16813

    PubMed  CAS  Google Scholar 

  • Exton JH (2002) Phospholipase D-structure, regulation and function. Rev Physiol Biochem Pharmacol 144:1–94

    PubMed  CAS  Google Scholar 

  • Fang Y, Olah ME (2007) Cyclic AMP-dependent, protein kinase A-independent activation of extracellular signal-regulated kinase 1/2 (ERK1/2) following adenosine receptor stimulation in human umbilical vein endothelial cells: Role of exchange protein activated by cAMP 1 (Epac1). J Pharmacol Exp Therap 322:1189–1200

    CAS  Google Scholar 

  • Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294:1942–1945

    PubMed  CAS  Google Scholar 

  • Foster DA (2007) Regulation of mTOR by phosphatidic acid? Cancer Res 67:1–4

    PubMed  CAS  Google Scholar 

  • Geng X, Li L, Watkins S, Robbins PD, Drain P (2003) The insulin secretory granule is the major site of K(ATP) channels of the endocrine pancreas. Diabetes 52:767–776

    PubMed  CAS  Google Scholar 

  • George SJ, Dwivedi A (2004) MMPs, cadherins, and cell proliferation. Trends Cardiovasc Med 14:100–105

    PubMed  CAS  Google Scholar 

  • Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS (2000) Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-lnduced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol 14:1283–1300

    PubMed  CAS  Google Scholar 

  • Gupta M, Yarwood SJ (2005) MAP1A light chain 2 interacts with exchange protein activated by cyclic AMP 1 (EPAC1) to enhance Rap1 GTPase activity and cell adhesion. J Biol Chem 280:8109–8116

    PubMed  CAS  Google Scholar 

  • Hochbaum D, Tanos T, Ribeiro-Neto F, Altschuler D, Coso OA (2003) Activation of JNK by Epac is independent of its activity as a Rap guanine nucleotide exchanger. J Biol Chem 278:33738–33746

    PubMed  CAS  Google Scholar 

  • Holz GG, Kang G, Harbeck M, Roe MW, Chepurny OG (2006) Cell physiology of cAMP sensor Epac. J Physiol 577:5–15

    PubMed  CAS  Google Scholar 

  • Holz GG, Chepurny OG, Schwede F (2007) Epac-selelctive cAMP analogs: New tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. Cell Signal 20:10–20

    PubMed  Google Scholar 

  • Honegger KJ, Capuano P, Winter C, Bacic D, Stange G, Wagner CA, Biber J, Murer H, Hernando N (2006) Regulation of sodium-proton exchanger isoform 3 (NHE3) by PKA and exchange protein directly activated by cAMP (EPAC). Proc Natl Acad Sci USA 103:803–808

    PubMed  CAS  Google Scholar 

  • Iacovelli L, Capobianco L, Salvatore L, Sallese M, D’Ancona GM, De BA (2001) Thyrotropin activates mitogen-activated protein kinase pathway in FRTL-5 by a cAMP-dependent protein kinase A-independent mechanism. Mol Pharmacol 60:924–933

    PubMed  CAS  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    PubMed  CAS  Google Scholar 

  • Jin TG, Satoh T, Liao Y, Song C, Gao X, Kariya K, Hu CD, Kataoka T (2001) Role of the CDC25 homology domain of phospholipase Cepsilon in amplification of Rap1-dependent signaling. J Biol Chem 276:30301–30307

    PubMed  CAS  Google Scholar 

  • Kang G, Joseph JW, Chepurny OG, Monaco M, Wheeler MB, Bos JL, Schwede F, Genieser HG, Holz GG (2003) Epac-selective cAMP analog 8-pCPT-2’′-O-Me-cAMP as a stimulus for Ca2 + -induced Ca2 + release and exocytosis in pancreatic beta-cells. J Biol Chem 278:8279–8285

    PubMed  CAS  Google Scholar 

  • Kang G, Chepurny OG, Malester B, Rindler MJ, Rehmann H, Bos JL, Schwede F, Coetzee WA, Holz GG (2006) cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells. J Physiol 573:595–609

    PubMed  CAS  Google Scholar 

  • Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H, Seino S (2001) Critical role of cAMP-GEFII–Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 276:46046–46053

    PubMed  CAS  Google Scholar 

  • Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282:2275–2279

    PubMed  CAS  Google Scholar 

  • Keiper M, Stope MB, Szatkowski D, Böhm A, Tysack K, Vom DF, Saur O, Oude Weernink PA, Evellin S, Jakobs KH, Schmidt M (2004) Epac- and Ca2 + -controlled activation of Ras and extracellular signal-regulated kinases by Gs-coupled receptors. J Biol Chem 279:46497–46508

    PubMed  CAS  Google Scholar 

  • Kelley GG, Reks SE, Ondrako JM, Smrcka A V (2001) Phospholipase C(: a novel Ras effector. EMBO J 20(4):743–754

    PubMed  CAS  Google Scholar 

  • Kinbara K, Goldfinger LE, Hansen M, Chou F-L, Ginsberg MH (2003) Ras GTPases: integrins’ friends or foes. Nat Rev Mol Cell Biol 4:767–775

    PubMed  CAS  Google Scholar 

  • Konstantinopoulos PA, Karamouzis MV, Papavassilou AG (2007) Post-translational modifications and regulation of the Ras superfamily of GTPases as anticancer targets. Nat Rev Drugs Disc 6:541–553

    CAS  Google Scholar 

  • Kooistra MR, Corada M, Dejana E, Bos JL (2005) Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Lett 579:4966–4972

    PubMed  CAS  Google Scholar 

  • Kooistra MR, Dube N, Bos JL (2006) Rap1: a key regulator in cell-cell junction formation. J Cell Sci 120:17–22

    Google Scholar 

  • Koopman WJ, Bosch RR, van Emst-de Vries SE, Spaargaren M, De Pont JJ, Willems PH (2003) R-Ras alters Ca2 + homeostasis by increasing the Ca2 + leak across the endoplasmic reticular membrane. J Biol Chem 278:13672–13679

    PubMed  CAS  Google Scholar 

  • Krendel M, Zenke FT, Bokoch GM (2002) Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 4:294–301

    PubMed  CAS  Google Scholar 

  • Krugmann S, Williams R, Stephens L, Hawkins PT (2004) ARAP3 is a PI3K- and Rap-regulated GAP for RhoA. Curr Biol 14:1380–1384

    PubMed  CAS  Google Scholar 

  • Kwon G, Pappan KL, Marshall CA, Schaffer JE, McDaniel ML (2004) cAMP Dose-dependently prevents palmitate-induced apoptosis by both protein kinase A- and cAMP-guanine nucleotide exchange factor-dependent pathways in beta-cells. J Biol Chem 279:8938–8945

    PubMed  CAS  Google Scholar 

  • Lacabaratz-Porret C, Corvazier E, Kovacs T, Bobe R, Bredoux R, Launay S, Papp B, Enouf J (1998) Platelet sarco/endoplasmic reticulum Ca2 + ATPase isoform 3b and Rap 1b: interrelation and regulation in physiopathology. Biochem J 332:173–181

    PubMed  CAS  Google Scholar 

  • Laroche-Joubert N, Marsy S, Michelet S, Imbert-Teboul M, Doucet A (2002) Protein kinase A-independent activation of ERK and H,K-ATPase by cAMP in native kidney cells: role of Epac I. J Biol Chem 277:18598–18604

    PubMed  CAS  Google Scholar 

  • Li Y, Asuri S, Rebhun JF, Castro AF, Paranavitana NC, Quilliam LA (2006) The RAP1 guanine nucleotide exchange factor Epac2 couples cyclic AMP and Ras signals at the plasma membrane. J Biol Chem 281:2506–2514

    PubMed  CAS  Google Scholar 

  • Liao Y, Satoh T, Gao X, Jin TG, Hu CD, Kataoka T (2001) RA-GEF-1, a guanine nucleotide exchange factor for Rap1, is activated by translocation induced by association with Rap1*GTP and enhances Rap1-dependent B-Raf activation. J Biol Chem 276:28478–28483

    PubMed  CAS  Google Scholar 

  • Lin SL, Johnson-Farley NN, Lubinsky DR, Cowen DS (2003) Coupling of neuronal 5-HT7 receptors to activation of extracellular-regulated kinase through a protein kinase A-independent pathway that can utilize Epac. J Neurochem 87:1076–1085

    PubMed  CAS  Google Scholar 

  • López de Jesús M, Stope MB, Oude Weernink PA, Mahlke Y, Borgermann C, Ananaba VN, Rimmbach C, Rosskopf D, Michel MC, Jakobs KH, Schmidt M (2006) Cyclic AMP-dependent and Epac-mediated activation of R-Ras by G protein-coupled receptors leads to phospholipase D stimulation. J Biol Chem 281:21837–21847

    PubMed  Google Scholar 

  • Lopez I, Mak EC, Ding J, Hamm HE, Lomasney JW (2001) A novel bifunctional phospholipase C that is regulated by Galpha12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem 276:2758–2765

    PubMed  CAS  Google Scholar 

  • Lorenowicz MJ, van GJ, de BM, Hordijk PL, Fernandez-Borja M (2006) Epac1-Rap1 signaling regulates monocyte adhesion and chemotaxis. J Leukoc Biol 80:1542–1552

    PubMed  CAS  Google Scholar 

  • Lotfi S, Li Z, Sun J, Zuo Y, Lam PP, Kang Y, Rahimi M, Islam D, Wang P, Gaisano HY, Jin T (2006) Role of the exchange protein directly activated by cyclic adenosine 5’′-monophosphate (Epac) pathway in regulating proglucagon gene expression in intestinal endocrine L cells. Endocrinology 147:3727–3736

    PubMed  CAS  Google Scholar 

  • Machida N, Umikawa M, Takei K, Sakima N, Myagmar B-E, Taira K, Uezato H, Ogawa Y, Kariya K (2004) Mitogen-activated protein kinase kinase kinase kinase 4 as a putative effector of Rap2 to activate the c-Jun N terminal kinase. J Biol Chem 279:15711–15714

    PubMed  CAS  Google Scholar 

  • Magiera MM, Gupta M, Rundell CJ, Satish N, Ernens I, Yarwood SJ (2004) Exchange protein directly activated by cAMP (EPAC) interacts with the light chain (LC) 2 of MAP1A. Biochem J 382:803–810

    PubMed  CAS  Google Scholar 

  • Maillet M, Robert SJ, Cacquevel M, Gastineau M, Vivien D, Bertoglio J, Zugaza JL, Fischmeister R, Lezoualc’h F (2003) Crosstalk between Rap1 and Rac regulates secretion of sAPPalpha. Nat Cell Biol 5:633–639

    PubMed  CAS  Google Scholar 

  • McConnachie G, Langeberg LK, Scott JD (2006) AKAP signaling complexes: getting to the heart of the matter. Trends Mol Med 12:317–323

    PubMed  CAS  Google Scholar 

  • Mei FC, Cheng X (2005) Interplay between exchange protein directly activated by cAMP (Epac) and microtubule cytoskeleton. Mol Biosyst 1:325–331

    PubMed  CAS  Google Scholar 

  • Mei FC, Qiao J, Tsygankova OM, Meinkoth JL, Quilliam LA, Cheng X (2002) Differential signaling of cyclic AMP: opposing effects of exchange protein directly activated by cyclic AMP and cAMP-dependent protein kinase on protein kinase B activation. J Biol Chem 277:11497–11504

    PubMed  CAS  Google Scholar 

  • Meyer DK (2006) The effects of PACAP on neural cell proliferation. Regul Pept 137:50–57

    PubMed  CAS  Google Scholar 

  • Misra UK, Pizzo SV (2005) Coordinate regulation of forskolin-induced cellular proliferation in macrophages by protein kinase A/cAMP-response element-binding protein (CREB) and Epac1-Rap1 signaling: effects of silencing CREB gene expression on Akt activation. J Biol Chem 280:38276–38289

    PubMed  CAS  Google Scholar 

  • Mitin N, Rossman KL, Der CJ (2005) Signaling interplay in Ras superfamily function. Curr Biol 15:R563–R574

    PubMed  CAS  Google Scholar 

  • Morel E, Marcantoni A, Gastineau M, Birkedal R, Rochais F, Garnier A, Lompre AM, Vandecasteele G, Lezoualc’h F (2005) cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ Res 97:1296–1304

    PubMed  CAS  Google Scholar 

  • Nikolaev VO, Bünnemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    PubMed  CAS  Google Scholar 

  • Noiges R, Eichinger R, Kutschera W, Fischer I, Nemeth Z, Wiche G, Propst F (2002) Microtubule-associated protein 1A (MAP1A) and MAP1B: light chains determine distinct functional properties. J Neurosci 22:2106–2114

    PubMed  CAS  Google Scholar 

  • Nollet F, Kools P, van Roy F (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299:551–572

    PubMed  CAS  Google Scholar 

  • Oestreich EA, Wang H, Malik S, Kaproth-Joslin KA, Blaxall BC, Kelley GG, Dirksen RT, Smrcka AV (2007) Epac-mediated activation of phospholipase C(plays a critical role in beta-adrenergic receptor-dependent enhancement of Ca2 + mobilization in cardiac myocytes. J Biol Chem 282:5488–5495

    PubMed  CAS  Google Scholar 

  • Ohba Y, Kurokawa K, Matsuda M (2003) Mechanism of the spatio-temporal regulation of Ras and Rap1. EMBO J 22:859–869

    PubMed  CAS  Google Scholar 

  • Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S (2000) cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2:805–811

    PubMed  CAS  Google Scholar 

  • Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodeling. Nat Rev Mol Cell Biol 8:221–233

    PubMed  CAS  Google Scholar 

  • Pearson G, Robinson F, Gibson TB, Xu B-E, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Reviews 22:153–183

    CAS  Google Scholar 

  • Pereira L, Metrich M, Fernandez-Velasco M, Lucas A, Leroy J, Perrier R, Morel E, Fischmeister R, Richard S, Benitah J-P, Lezoualc’h F, Gomez AM (2007) The cAMP binding protein Epac modulates Ca2 + sparks by a Ca2 + /calmodulin kinase signalling pathway in rat cardiac myocytes. J Physiol 583.2:685–694

    Google Scholar 

  • Plowman SJ, Hancock JF (2005) Ras signaling from plasma membrane and endomembrane microdomains. Biochim Biophy Acta 1746:274–283

    CAS  Google Scholar 

  • Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K (2004) Detecting cAMP-induced Epac activation by fluorescent resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5:1176–1180

    PubMed  CAS  Google Scholar 

  • Price LS, Hajdo-Milasinovic A, Zhao J, Zwartkruis FJ, Collard JG, Bos JL (2004) Rap1 regulates E-cadherin-mediated cell-cell adhesion. J Biol Chem 279:35127–35132

    PubMed  CAS  Google Scholar 

  • Qiao J, Mei FC, Popov VL, Vergara LA, Cheng X (2002) Cell cycle-dependent subcellular localization of exchange factor directly activated by cAMP. J Biol Chem 277:26581–26586

    PubMed  CAS  Google Scholar 

  • Quilliam LA, Rebhun JF, Castro AF (2002) A growing family of guanine nucleotide exchange factors is responsible for activation of ras-family GTPase. Prog Nucl Acid Res 71:391–444

    Article  CAS  Google Scholar 

  • Rangarajan S, Enserink JM, Kuiperij HB, de RJ, Price LS, Schwede F, Bos JL (2003) Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the beta 2-adrenergic receptor. J Cell Biol 160:487–493

    PubMed  CAS  Google Scholar 

  • Rehmann H, Das J, Knipscheer P, Wittinghofer A, Bos JL (2006) Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature 439:625–628

    PubMed  CAS  Google Scholar 

  • Robert S, Maillet M, Morel E, Launay JM, Fischmeister R, Mercken L, Lezoualc’h F (2005) Regulation of the amyloid precursor protein ectodomain shedding by the 5-HT4 receptor and Epac. FEBS Lett 579:1136–1142

    PubMed  CAS  Google Scholar 

  • Rocks O, Peyker A, Bastiaens PIH (2006) Spatio-temporal segregation of Ras signals: one ship, three anchors, many harbors. Curr Opin Cell Biol 18:351–357

    PubMed  CAS  Google Scholar 

  • Rossman KL, Der CJ, Song C (2005) GEFs means go: Turining on Rho GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:167–180

    PubMed  CAS  Google Scholar 

  • Sands WA, Woolson HD, Milne GR, Rutherford C, Palmer TM (2006) Exchange protein activated by cyclic AMP (Epac)-mediated induction of suppressor of cytokine signaling 3 (SOCS-3) in vascular endothelial cells. Mol Cell Biol 26:6333–6346

    PubMed  CAS  Google Scholar 

  • Schmidt M, Evellin S, Oude Weernink PA, von DF, Rehmann H, Lomasney JW, Jakobs KH (2001) A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol 3:1020–1024

    PubMed  CAS  Google Scholar 

  • Schmidt M, Sand C, Jakobs KH, Michel MC, Oude Weernink PA (2007) Epac and the cardiovascular system. Curr Opin Pharmacol 7:193–200

    PubMed  CAS  Google Scholar 

  • Seino S, Shibasaki T (2005) PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 85:1303–1342

    PubMed  CAS  Google Scholar 

  • Self AJ, Caron E, Paterson HF, Hall A (2001) Analysis of R-Ras signalling pathways. J Cell Sci 114:1357–1366

    PubMed  CAS  Google Scholar 

  • Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441:424–430

    PubMed  CAS  Google Scholar 

  • Shi GX, Rehmann H, Andres DA (2006) A novel cyclic AMP-dependent Epac-Rit signaling pathway contributes to PACAP38-mediated neuronal differentiation. Mol Cell Biol 26:9136–9147

    PubMed  CAS  Google Scholar 

  • Small JV, Gelger B, Kaverina I, Bershadsky A (2002) How do microtubules guide migrating cells? Nat Rev Mol Cell Biol 3:957–964

    PubMed  CAS  Google Scholar 

  • Smrcka AV, Blaxall BC, Dirksen RT (2007) Epac regulation of cardiac EC couling. J Physiol 584:1029–1031

    PubMed  CAS  Google Scholar 

  • Somekawa S, Fukuhara S, Nakaoka Y, Fujita H, Saito Y, Mochizuki N (2005) Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes. Circ Res 97:655–662

    PubMed  CAS  Google Scholar 

  • Song C, Hu C-D, Masago M, Kariya K, Yamawaki-Kataoka Y, Shibatohge M, Wu D, Satoh T, Kataoka T (2001) Regulation of a novel human phospholipase C, PLC(, through membrane targeting by Ras. J Biol Chem 276:2752–2757

    PubMed  CAS  Google Scholar 

  • Sorli SC, Bunney TD, Sudgen PH, Paterson HF, Katan M (2006) Signaling properties and expression in normal and tumour tissues of two phospholipase C epsilon splice variants. Oncogene 24:90–100

    Google Scholar 

  • Spencer ML, Shao H, Andres DA (2002) Induction of neurite extension and survival in pheochromocytoma cells by the Rit GTPase. J Biol Chem 277:20160–20168

    PubMed  CAS  Google Scholar 

  • Ster J, De BF, Guerineau NC, Janossy A, Barrere-Lemaire S, Bos JL, Bockaert J, Fagni L (2007) Exchange protein activated by cAMP (Epac) mediates cAMP activation of p38 MAPK and modulation of Ca2 + -dependent K + channels in cerebellar neurons. Proc Natl Acad Sci USA 104:2519–2524

    PubMed  CAS  Google Scholar 

  • Stork PJ (2003) Does Rap1 deserve a bad Rap? Trends Biochem Sci 28:267–275

    PubMed  CAS  Google Scholar 

  • Stork PJS, Schmitt JM (2002) Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends in Cell Biology 12:258–266

    PubMed  CAS  Google Scholar 

  • Taira K, Umikawa M, Takei K, Myagmar B-E, Shinzato M, Machida N, Uezato H, Nonaka S, Kariya K (2004) The Traf2- and Nck-intertacting kinase as a putative effector of Rap2 to regulate actin cytoskeleton. J Biol Chem 279:49488–49496

    PubMed  CAS  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiological Reviews 81:153–208

    PubMed  CAS  Google Scholar 

  • Tiwari S, Felekkis K, Moon EY, Flies A, Sherr DH, Lerner A (2004) Among circulating hematopoietic cells, B-CLL uniquely expresses functional EPAC1, but EPAC1-mediated Rap1 activation does not account for PDE4 inhibitor-induced apoptosis. Blood 103:2661–2667

    PubMed  CAS  Google Scholar 

  • Toker A (2002) Phosphoinositides and signal transduction. Cell Mol Life Sci 59:761–779

    PubMed  CAS  Google Scholar 

  • Tsang CK, Qi H, Liu LF, Zheng XFS (2007) Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Disc Today 12:112–124

    CAS  Google Scholar 

  • Ulucan C, Wang X, Baljinnyam E, Bai YZ, Okumura S, Sato M, Minamisawa S, Hirotani S, Ishikawa Y (2007) Developmental changes in gene expression of Epac and its upregulation in myocardial hypertrophy. Am J Physiol Heart Circ Physiol 293:H1162–1672

    Google Scholar 

  • vom Dorp F, Sari AY, Sanders H, Keiper M, Oude Weernink PA, Jakobs KH, Schmidt M (2004) Inhibition of phospholipase C-e by Gi-coupled receptors. Cell Signal 16:921–928

    PubMed  CAS  Google Scholar 

  • Wang Y, Okamoto M, Schmitz F, Hofmann K, Sudhof TC (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388:593–598

    PubMed  CAS  Google Scholar 

  • Wang Z, Dillon TJ, Pokala V, Mishra S, Labudda K, Hunter B, Stork PJ (2006) Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol Cell Biol 26:2130–2145

    PubMed  CAS  Google Scholar 

  • Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846

    PubMed  CAS  Google Scholar 

  • Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959–970

    PubMed  CAS  Google Scholar 

  • Woodgett JR (2005) Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol 17:150–157

    PubMed  CAS  Google Scholar 

  • Yarwood SJ (2005) Microtubule-associated proteins (MAPs) regulate cAMP signalling through exchange protein directly activated by cAMP (EPAC). Biochem Soc Trans 33:1327–1329

    PubMed  CAS  Google Scholar 

  • Yip KP (2006) Epac-mediated Ca(2+) mobilization and exocytosis in inner medullary collecting duct. Am J Physiol Renal Physiol 291:F882–F890

    PubMed  CAS  Google Scholar 

  • Zhong N, Zucker RS (2005) cAMP acts on exchange protein activated by cAMP/cAMP-regulated guanine nucleotide exchange protein to regulate transmitter release at the crayfish neuromuscular junction. J Neurosci 25:208–214

    PubMed  CAS  Google Scholar 

  • Zmuda-Trzebiatowska E, Manganiello V, Degerman E (2007) Novel mechanisms of the regulation of protein kinase B in adipocytes; implications for protein kinase A, Epac, phosphodiesterases 3 and 4. Cell Signal 19:81–86

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Within the last 10 years, our knowledge about the impact of Epac-driven signaling routes has increased remarkably, and novel Epac-related signaling properties are published every week. Unfortunately, as for space limitations, we were not able to include all recent work on Epac. We thank Dr. Oude Weernink for critical reading of the manuscript. Sara S. Roscioni is recipient of an Ubbo Emmius Fellowship from the School of Behavioral and Cognitive Neurosciences (BCN), University of Groningen, and Martina Schmidt is a Rosalind Franklin Fellow at the University of Groningen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roscioni, S.S., Elzinga, C.R.S. & Schmidt, M. Epac: effectors and biological functions. Naunyn-Schmied Arch Pharmacol 377, 345–357 (2008). https://doi.org/10.1007/s00210-007-0246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0246-7

Keywords

Navigation