Skip to main content
Log in

Muscarinic receptor subtypes involved in carbachol-induced contraction of mouse uterine smooth muscle

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Functional muscarinic acetylcholine receptors present in the mouse uterus were characterized by pharmacological and molecular biological studies using control (DDY and wild-type) mice, muscarinic M2 or M3 single receptor knockout (M2KO, M3KO), and M2 and M3 receptor double knockout mice (M2/M3KO). Carbachol (10 nM–100 μM) increased muscle tonus and phasic contractile activity of uterine strips of control mice in a concentration-dependent manner. The maximum carbachol-induced contractions (E max) differed between cervical and ovarian regions of the uterus. The stage of the estrous cycle had no significant effect on carbachol concentration–response relationships. Tetrodotoxin did not decrease carbachol-induced contractions, but the muscarinic receptor antagonists (11-[[2-[(diethylaminomethyl)-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b[2,3-b][1,4]benzodiazepin6-one (AF-DX116), N-[2-[2-[(dipropylamino)methyl]-1-piperidinyl]ethyl]-5,6-dihydro-6-oxo-11H-pyrido[2,3-b][1,4] benzodiazepine-11-carboxamide (AF-DX384), 4-diphenylacetoxy-N-methyl-piperidine(4-DAMP), para-fluoro-hexa hydro-sila-diphenidol (p-F-HHSiD), himbacine, methoctramine, pirenzepine, and tropicamide) inhibited carbachol-induced contractions in a competitive fashion. The pK b values for these muscarinic receptor antagonists correlated well with the known pK i values of these antagonists for the M3 muscarinic receptor. In uterine strips isolated from mice treated with pertussis toxin (100 μg/kg, i.p. for 96 h), E max values for carbachol were significantly decreased, but effective concentration that caused 50% of E max values (EC50) remained unchanged. In uterine strips treated with 4-DAMP mustard (30 nM) and AF-DX116 (1 μM), followed by subsequent washout of AF-DX116, neither carbachol nor N,N,N,-trimethyl-4-(2-oxo-1-pyrolidinyl)-2-butyn-1-ammonium iodide (oxotremorine-M) caused any contractile responses. Both M2 and M3 muscarinic receptor messenger RNAs were detected in the mouse uterus via reverse transcription polymerase chain reaction. Carbachol also caused contraction of uterine strips isolated from M2KO mice, but the concentration–response curve was shifted to the right and downward compared with that for the corresponding wild-type mice. On the other hand, uterine strips isolated from M3KO and M2/M3 double KO mice were virtually insensitive to carbachol. In conclusion, although both M2 and M3 muscarinic receptors were expressed in the mouse uterus, carbachol-induced contractile responses were predominantly mediated by the M3 receptor. Activation of M2 receptors alone did not cause uterine contractions; however, M2 receptor activation enhanced M3 receptor-mediated contractions in the mouse uterus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdalla FM, Marostica E, Picarelli ZP, Abreu LC, Avellar MC, Porto CS (2004) Effect of estrogen on muscarinic acetylcholine receptor expression in rat myometrium. Mol Cell Endocrinol 213:139–148

    Article  PubMed  CAS  Google Scholar 

  • Aihara T, Nakamura Y, Taketo MM, Matsui M, Okabe S (2005) Cholinergically stimulated gastric acid secretion is mediated by M3 and M5 but not M1 muscarinic acetylcholine receptors in mice. Am J Physiol 288:G1199–G1207

    CAS  Google Scholar 

  • Caulfield MP, Birdsall NJ (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    PubMed  CAS  Google Scholar 

  • Darroch S, Irving HR, Mitchelson FJ (2000) Characterization of muscarinic receptor subtypes in avian smooth muscle. Eur J Pharmacol 402:161–169

    Article  PubMed  CAS  Google Scholar 

  • Dong YL, Yallampalli C (2000) Pregnancy and exogenous steroid treatments modulate the expression of relaxant EP2 and contractile FP receptors in the rat uterus. Biol Reprod 62:533–539

    Article  PubMed  CAS  Google Scholar 

  • Doods HN, Willim KD, Boddeke HW, Entzeroth M (1993) Characterization of muscarinic receptors in guinea-pig uterus. Eur J Pharmacol 250:223–230

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM, Michel AD, Whiting RL (1989) Characterization of the muscarinic receptor subtype mediating contractions of the guinea pig uterus. Br J Pharmacol 96:497–499

    PubMed  CAS  Google Scholar 

  • Ehlert FJ, Griffin MT (1998) The use of irreversible ligands to inactivate receptor subtypes: 4-DAMP mustard and muscarinic receptors in smooth muscle. Life Sci 62:1659–1664

    Article  PubMed  CAS  Google Scholar 

  • Ehlert FJ, Griffin MT, Abe DM, Vo TH, Taketo MM, Manabe T, Matsui M (2005) The M2 muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. J Pharmacol Exp Ther 313:368–378

    Article  PubMed  CAS  Google Scholar 

  • Gautam D, Heard TS, Cui Y, Miller G, Bloodworth L, Wess J (2004) Cholinergic stimulation of salivary secretion studied with M1 and M3 muscarinic receptor single- and double-knockout mice. Mol Pharmacol 66:260–267

    Article  PubMed  CAS  Google Scholar 

  • Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, Brodkin J, Grinberg A, Sheng H, Wess J (1999) Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:1692–1697

    Article  PubMed  CAS  Google Scholar 

  • Griffiths AL, Marshall KM, Senior J, Fleming C, Woodward DF (2006) Effect of the oestrous cycle, pregnancy and uterine region on the responsiveness of the isolated mouse uterus to prostaglandin F and the thromboxane mimetic U46619. J Endocrinol 188:569–577

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa T, Uchiyama F, Hirose K, Taneike T (1999) Characterization of the muscarinic receptor subtype that mediates the contractile response of acetylcholine in the swine myometrium. Eur J Pharmacol 367:325–334

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa T, Hashiba K, Cao J, Unno T, Komori S, Yamada M, Wess J, Taneike T (2007) Functional roles of muscarinic M2 and M3 receptors in mouse stomach motility: studies with muscarinic receptor knockout mice. Eur J Pharmacol 554:212–222

    Article  PubMed  CAS  Google Scholar 

  • Leiber D, Marc S, Harbon S (1990) Pharmacological evidence for distinct muscarinic receptor subtypes coupled to the inhibition of adenylate cyclase and to the increased generation of inositol phosphates in the guinea pig myometrium. J Pharmacol Exp Ther 252:800–809

    PubMed  CAS  Google Scholar 

  • Liu J, Lee TJ (1999) Mechanism of prejunctional muscarinic receptor-mediated inhibition of neurogenic vasodilation in cerebral arteries. Am J Physiol 276:H194–H204

    PubMed  CAS  Google Scholar 

  • Matsui M, Motomura D, Karasawa H, Fujikawa T, Jiang J, Komiya Y, Takahashi S, Taketo MM (2000) Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci USA 97:9579–9584

    Article  PubMed  CAS  Google Scholar 

  • Matsui M, Motomura D, Fujikawa T, Jiang J, Takahashi S, Manabe T, Taketo MM (2002) Mice lacking M2 and M3 muscarinic acetylcholine receptors are devoid of cholinergic smooth muscle contractions but still viable. J Neurosci 22:10627–10632

    PubMed  CAS  Google Scholar 

  • Munns M, Pennefather JN (1998) Pharmacological characterization of muscarinic receptors in the uterus of oestrogen-primed and pregnant rats. Br J Pharmacol 123:1639–1644

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Kimura J, Yamaguchi O (2002) Muscarinic M2 receptors inhibit Ca2+-activated K+ channels in rat bladder smooth muscle. Int J Urol 9:689–696

    Article  PubMed  CAS  Google Scholar 

  • Oponowicz A, Franczak A, Kurowicka B, Kotwica G (2006) Relative transcript abundance of oxytocin receptor gene in porcine uterus during luteolysis and early pregnancy. J Appl Genet 47:345–351

    PubMed  Google Scholar 

  • Stengel PW, Cohen ML (2002) Muscarinic receptor knockout mice: role of muscarinic acetylcholine receptors M2, M3, and M4 in carbamylcholine-induced gallbladder contractility. J Pharmacol Exp Ther 301:643–650

    Article  PubMed  CAS  Google Scholar 

  • Stengel PW, Gomeza J, Wess J, Cohen ML (2000) M2 and M4 receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro. J Pharmacol Exp Ther 292:877–885

    PubMed  CAS  Google Scholar 

  • Stengel PW, Yamada M, Wess J, Cohen ML (2002) M3-receptor knockout mice: muscarinic receptor function in atria, stomach fundus, urinary bladder, and trachea. Am J Physiol 282:R1443–R1449

    CAS  Google Scholar 

  • Struckmann N, Schwering S, Wiegand S, Gschnell A, Yamada M, Kummer W, Wess J, Haberberger RV (2003) Role of muscarinic receptor subtypes in the constriction of peripheral airways: studies on receptor-deficient mice. Mol Pharmacol 64:1444–1451

    Article  PubMed  CAS  Google Scholar 

  • Thomas EA, Baker SA, Ehlert FJ (1993) Functional role for the M2 muscarinic receptor in smooth muscle of guinea pig ileum. Mol Pharmacol 44:102–110

    PubMed  CAS  Google Scholar 

  • Traurig HH, Papka RE (1993) Autonomic efferent and visceral sensory innervation of the female reproductive system: special reference to the functional roles of the nerves in reproductive organs. In: Maggi CA (ed) Nervous Control of the uterogenital system. Harwood Academic, New York, pp 103–144

    Google Scholar 

  • Unno T, Matsuyama H, Sakamoto T, Uchiyama M, Izumi Y, Okamoto H, Yamada M, Wess J, Komori S (2005) M2 and M3 muscarinic receptor mediated contractions in longitudinal smooth muscle of the ileum studied with receptor knockout mice. Br J Pharmacol 146:98–108

    Article  PubMed  CAS  Google Scholar 

  • Varol FG, Hadjiconstantinou M, Zuspan FP, Neff NH (1989) Pharmacological characterization of the muscarinic receptors mediating phosphoinositide hydrolysis in rat myometrium. J Pharmacol Exp Ther 249:11–15

    PubMed  CAS  Google Scholar 

  • Wade GR, Sims SM (1993) Muscarinic stimulation of tracheal smooth muscle cells activates large-conductance Ca2+-dependent K+ channel. Am J Physiol 265:C658–C665

    PubMed  CAS  Google Scholar 

  • Wang Z, Shi H, Wang H (2004) Functional M3 muscarinic acetylcholine receptors in mammalian hearts. Br J Pharmacol 142:395–408

    Article  PubMed  CAS  Google Scholar 

  • Wess J (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44:423–450

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, Makita R, Ogawa M, Chou CJ, Xia B, Crawley JN, Felder CC, Deng CX, Wess J (2001) Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410:207–212

    Article  PubMed  CAS  Google Scholar 

  • Zarghooni S, Wunsch J, Bodenbenner M, Bruggmann D, Grando SA, Schwantes U, Wess J, Kummer W, Lips KS (2007) Expression of muscarinic and nicotinic acetylcholine receptors in the mouse urothelium. Life Sci 80:2308–2313

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takio Kitazawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitazawa, T., Hirama, R., Masunaga, K. et al. Muscarinic receptor subtypes involved in carbachol-induced contraction of mouse uterine smooth muscle. Naunyn-Schmied Arch Pharmacol 377, 503–513 (2008). https://doi.org/10.1007/s00210-007-0223-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0223-1

Keywords

Navigation