Skip to main content

Advertisement

Log in

Inhibition of erythrocyte “apoptosis” by catecholamines

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Osmotic shock, oxidative stress and Cl removal activate a non-selective Ca2+-permeable cation conductance in human erythrocytes. The entry of Ca2+ leads to activation of a scramblase with subsequent exposure of phosphatidylserine at the cell surface. Phosphatidylserine mediates binding to phosphatidylserine receptors on macrophages which engulf and degrade phosphatidylserine exposing cells. Moreover, phosphatidylserine exposure may lead to adherence of erythrocytes to the vascular wall. In the present study, we explored whether activation of the non-selective cation conductance and subsequent phosphatidylserine exposure might be influenced by catecholamines. Phosphatidylserine exposure has been determined by FITC-annexin V binding while cell volume was estimated from forward scatter in FACS analysis. Removal of Cl enhanced annexin binding and decreased forward scatter, an effect significantly blunted by the β agonist isoproterenol (IC50 approx. 1 μM). Fluo-3 fluorescence measurements revealed an increase of cytosolic Ca2+ activity following Cl removal, an effect again significantly blunted by isoproterenol exposure (10 μM). Whole-cell patch-clamp experiments performed in Cl free bath solution indeed disclosed a time-dependent inactivation of a non-selective cation conductance following isoproterenol exposure (10 μM). Phenylephrine (IC50<10 μM), dobutamine (IC50 approx. 1 μM) and dopamine (IC50 approx. 3 μM) similarly inhibited the effect of Cl removal on annexin binding and forward scatter. In conclusion, several catecholamines inhibit the Cl removal-activated Ca2+ entry into erythrocytes, thus preventing increase of cytosolic Ca2+ activity, subsequent cell shrinkage and activation of erythrocyte scramblase. The catecholamines thus counteract erythrocyte phosphatidylserine exposure and subsequent clearance of erythrocytes from circulating blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andree HA, Reutelingsperger CP, Hauptmann R, Hemker HC et al (1990) Binding of vascular anticoagulant alpha (VAC Alpha) to planar phospholipid bilayers. J Biol Chem 265:4923–4928

    PubMed  CAS  Google Scholar 

  • Andrews DA, Yang L, Low PS (2002) Phorbol ester stimulates a protein kinase C-mediated agatoxin-TK-sensitive calcium permeability pathway in human red blood cells. Blood 100:3392–3399

    Article  PubMed  CAS  Google Scholar 

  • Barry PH, Lynch JW (1991) Liquid junction potentials and small cell effects in patch-clamp analysis. J Membr Biol 121:101–117

    Article  PubMed  CAS  Google Scholar 

  • Benjamin LJ, Manning JM (1986) Enhanced survival of sickle erythrocytes upon treatment with glyceraldehyde. Blood 67:544–546

    PubMed  CAS  Google Scholar 

  • Berg CP, Engels IH, Rothbart A, Lauber K et al (2001) Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death Differ 8:1197–1206

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  • Boas FE, Forman L, Beutler E (1998) Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia. Proc Natl Acad Sci U S A 95:3077–3081

    Article  PubMed  CAS  Google Scholar 

  • Bonomini M, Sirolli V, Gizzi F, Di Stante S et al (2002) Enhanced adherence of human uremic erythrocytes to vascular endothelium: role of phosphatidylserine exposure. Kidney Int 62:1358–1363

    Article  PubMed  CAS  Google Scholar 

  • Bosman GJCGM, Willekens FLA, Werre JM (2005) Erythrocyte aging: a more than superficial resemblance to apoptosis? Cell Physiol Biochem 16:1–8

    Article  PubMed  CAS  Google Scholar 

  • Brand VB, Sandu CD, Duranton C, Tanneur V et al (2003) Dependence of plasmodium falciparum in vitro growth on the cation permeability of the human host erythrocyte. Cell Physiol Biochem 13:347–356

    Article  PubMed  CAS  Google Scholar 

  • Bratosin D, Estaquier J, Petit F, Arnoult D et al (2001) Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ 8:1143–1156

    Article  PubMed  CAS  Google Scholar 

  • Cabado AG, Vieytes MR, Botana LM (1994) Effect of ion composition on the changes in membrane potential induced with several stimuli in rat mast cells. J Cell Physiol 158:309–316

    Article  PubMed  CAS  Google Scholar 

  • Chan HC, Goldstein J, Nelson DJ (1992) Alternate pathways for chloride conductance activation in normal and cystic fibrosis airway epithelial cells. Am J Physiol 262:C1273–C1283

    PubMed  CAS  Google Scholar 

  • Closse C, Dachary-Prigent J, Boisseau MR (1999) Phosphatidylserine-related adhesion of human erythrocytes to vascular endothelium. Br J Haematol 107:300–302

    Article  PubMed  CAS  Google Scholar 

  • Corash L, Spielberg S, Bartsocas C, Boxer L et al (1980) Reduced chronic hemolysis during high-dose Vitamin E administration in mediterranean-type glucose-6-phosphate dehydrogenase deficiency. N Engl J Med 303:416–420

    Article  PubMed  CAS  Google Scholar 

  • Damonte G, Guida L, Sdraffa A, Benatti U et al (1992) Mechanisms of perturbation of erythrocyte calcium homeostasis in favism. Cell Calcium 13:649–658

    Article  PubMed  CAS  Google Scholar 

  • Daugas E, Cande C, Kroemer G (2001) Erythrocytes: death of a mummy. Cell Death Differ 8:1131–1133

    Article  PubMed  CAS  Google Scholar 

  • Duranton C, Huber SM, Lang F (2002) Oxidation induces a Cl(-)-dependent cation conductance in human red blood cells. J Physiol 539:847–855

    Article  PubMed  CAS  Google Scholar 

  • Duranton C, Huber S, Tanneur V, Lang K et al (2003) Electrophysiological properties of the plasmodium falciparum-induced cation conductance of human erythrocytes. Cell Physiol Biochem 13:189–198

    Article  PubMed  CAS  Google Scholar 

  • Eda S, Sherman IW (2002) Cytoadherence of malaria-infected red blood cells involves exposure of phosphatidylserine. Cell Physiol Biochem 12:373–384

    Article  PubMed  CAS  Google Scholar 

  • Fadok VA, Bratton DL, Rose DM, Pearson A et al (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90

    Article  PubMed  CAS  Google Scholar 

  • Gallagher PG, Chang SH, Rettig MP, Neely JE et al (2003) Altered erythrocyte endothelial adherence and membrane phospholipid asymmetry in hereditary hydrocytosis. Blood 101:4625–4627

    Article  PubMed  CAS  Google Scholar 

  • Gamper N, Huber SM, Badawi K, Lang F (2000) Cell volume-sensitive sodium channels upregulated by glucocorticoids in U937 macrophages. Pflügers Archiv Eur J Physiol 441:281–286

    Article  CAS  Google Scholar 

  • Gulbins E, Jekle A, Ferlinz K, Grassme H et al (2000) Physiology of apoptosis. Am J Physiol Renal Physiol 279:F605–F615

    PubMed  CAS  Google Scholar 

  • Harrison T, Samuel BU, Akompong T, Hamm H et al (2003) Erythrocyte G protein-coupled receptor signaling in malarial infection. Science 301:1734–1736

    Article  PubMed  CAS  Google Scholar 

  • Hines PC, Zen Q, Burney SN, Shea DA et al (2003) Novel epinephrine and cyclic AMP-mediated activation of BCAM/Lu-Dependent Sickle (SS) RBC adhesion. Blood 101:3281–3287

    Article  PubMed  CAS  Google Scholar 

  • Huber SM, Gamper N, Lang F (2001) Chloride conductance and volume-regulatory nonselective cation conductance in human red blood cell ghosts. Pflügers Archiv Eur J Physiol 441:551–558

    Article  CAS  Google Scholar 

  • Kiefer CR, Snyder LM (2000) Oxidation and erythrocyte senescence. Curr Opin Hematol 7:113–116

    Article  PubMed  CAS  Google Scholar 

  • Koch J, Korbmacher C (1999) Osmotic shrinkage activates Nonselective Cation (NSC) channels in various cell types. J Membr Biol 168:131–139

    Article  PubMed  CAS  Google Scholar 

  • Lang KS, Roll B, Myssina S, Schittenhelm M et al (2002) Enhanced erythrocyte apoptosis in sickle cell anemia, Thalassemia and glucose-6-phosphate dehydrogenase deficiency. Cell Physiol Biochem 12:365–372

    Article  PubMed  CAS  Google Scholar 

  • Lang KS, Duranton C, Poehlmann H, Myssina S et al (2003a) Cation channels trigger apoptotic death of erythrocytes. Cell Death Differ 10:249–256

    Article  PubMed  CAS  Google Scholar 

  • Lang KS, Myssina S, Tanneur V, Wieder T et al (2003b) Inhibition of erythrocyte cation channels and apoptosis by ethylisopropylamiloride. Naunyn-Schmiedeberg's Arch Pharmacol 367:391–396

    Article  CAS  Google Scholar 

  • Lang PA, Kaiser S, Myssina S, Wieder T et al (2003c) Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am J Physiol Cell Physiol 285:C1553–C1560

    PubMed  CAS  Google Scholar 

  • Lang PA, Warskulat U, Heller-Stilb B, Huang DY et al (2003d) Blunted apoptosis of erythrocytes from taurine transporter deficient mice. Cell Physiol Biochem 13:337–346

    Article  PubMed  CAS  Google Scholar 

  • Lang KS, Myssina S, Brand V, Sandu C et al (2004a) Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes. Cell Death Differ 11:231–243

    Article  PubMed  CAS  Google Scholar 

  • Lang KS, Myssina S, Lang PA, Tanneur V et al (2004b) Inhibition of erythrocyte phosphatidylserine exposure by Urea and Cl-. Am J Physiol Renal Physiol 286:F1046–F1053

    Article  PubMed  CAS  Google Scholar 

  • Lang KS, Lang PA, Bauer C, Duranton C et al (2005a) Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem 15:195–202

    Article  PubMed  CAS  Google Scholar 

  • Lang PA, Kempe DS, Myssina S, Tanneur V et al (2005b) PGE(2) in the regulation of programmed erythrocyte death. Cell Death Differ 12:415–428

    Article  PubMed  CAS  Google Scholar 

  • Maeno E, Ishizaki Y, Kanaseki T, Hazama A et al (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci U S A 97:9487–9492

    Article  PubMed  CAS  Google Scholar 

  • Manodori AB, Barabino GA, Lubin BH, Kuypers FA (2000) Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin. Blood 95:1293–1300

    PubMed  CAS  Google Scholar 

  • Michea L, Ferguson DR, Peters EM, Andrews PM et al (2000) Cell cycle delay and apoptosis are induced by high salt and urea in renal medullary cells. Am J Physiol Renal Physiol 278:F209–F218

    PubMed  CAS  Google Scholar 

  • Myssina S, Lang PA, Kempe DS, Kaiser S et al (2004) Cl- channel blockers NPPB and niflumic acid blunt Ca(2+)-induced erythrocyte ‘apoptosis’. Cell Physiol Biochem 14:241–248

    Article  PubMed  CAS  Google Scholar 

  • Nicotera P, Orrenius S (1998) The role of calcium in apoptosis. Cell Calcium 23:173–180

    Article  PubMed  CAS  Google Scholar 

  • Oonishi T, Sakashita K, Uyesaka N (1997) Regulation of red blood cell filterability by Ca2+ influx and CAMP-mediated signaling pathways. Am J Physiol 273:C1828–C1834

    PubMed  CAS  Google Scholar 

  • Pavoni V, Verri M, Ferraro L, Volta CA et al (1998) Plasma dopamine concentration and effects of low dopamine doses on urinary output after major vascular surgery. Kidney Int Suppl 66:S75–S80

    PubMed  CAS  Google Scholar 

  • Rice L, Alfrey CP (2005) The negative regulation of red cell mass by neocytolysis: physiologic and pathophysiologic manifestations. Cell Physiol Biochem 15:245–250

    Article  PubMed  CAS  Google Scholar 

  • Roelofsen B (1991) Molecular architecture and dynamics of the plasma membrane lipid bilayer: the red blood cell as a model. Infection 19(Suppl 4):S206–S209

    Article  PubMed  CAS  Google Scholar 

  • Roger F, Martin PY, Rousselot M, Favre H et al (1999) Cell shrinkage triggers the activation of mitogen-activated protein kinases by hypertonicity in the rat kidney medullary thick ascending limb of the henle's loop. Requirement of P38 kinase for the regulatory volume increase response. J Biol Chem 274:34103–34110

    Article  PubMed  CAS  Google Scholar 

  • Romero PJ, Romero EA (1999) Effect of cell ageing on Ca2+ influx into human red cells. Cell Calcium 26:131–137

    Article  PubMed  CAS  Google Scholar 

  • Rosette C, Karin M (1996) Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 274:1194–1197

    Article  PubMed  CAS  Google Scholar 

  • Ruymann FB, Popejoy LA, Brouillard RB (1978) Splenic sequestration and ineffective erythropoiesis in hemoglobin E-beta-Thalassemia disease. Pediatr Res 12:1020–1023

    Article  PubMed  CAS  Google Scholar 

  • Sager G (1982) Receptor binding sites for beta-adrenergic ligands on human erythrocytes. Biochem Pharmacol 31:99–104

    Article  PubMed  CAS  Google Scholar 

  • Setty BN, Kulkarni S, Stuart MJ (2002) Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion. Blood 99:1564–1571

    Article  PubMed  CAS  Google Scholar 

  • Sprague RS, Ellsworth ML, Stephenson AH, Lonigro AJ (2001) Participation of CAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release. Am J Physiol Cell Physiol 281:C1158–C1164

    PubMed  CAS  Google Scholar 

  • Volk T, Fromter E, Korbmacher C (1995) Hypertonicity activates nonselective cation channels in mouse cortical collecting duct cells. Proc Natl Acad Sci U S A 92:8478–8482

    Article  PubMed  CAS  Google Scholar 

  • Wali RK, Jaffe S, Kumar D, Kalra VK (1988) Alterations in organization of phospholipids in erythrocytes as factor in adherence to endothelial cells in diabetes mellitus. Diabetes 37:104–111

    Article  PubMed  CAS  Google Scholar 

  • Wehner F, Sauer H, Kinne RK (1995) Hypertonic stress increases the Na+ conductance of rat hepatocytes in primary culture. J Gen Physiol 105:507–535

    Article  PubMed  CAS  Google Scholar 

  • Wehner F, Böhmer C, Heinzinger H, van den BF et al (2000) The hypertonicity-induced Na(+) conductance of rat hepatocytes: physiological significance and molecular correlate. Cell Physiol Biochem 10:335–340

    Article  PubMed  CAS  Google Scholar 

  • Yang XY, Qu Q, Yang TY, Chan WC et al (1988) Treatment of the Thalassemia syndrome with splenectomy. Hemoglobin 12:601–608

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Zhao J, Wiedmer T, Sims PJ (2002) Normal hemostasis but defective hematopoietic response to growth factors in mice deficient in phospholipid scramblase 1. Blood 99:4030–4038

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the meticulous preparation of the manuscript by Tanja Loch. This study was supported by the Deutsche Forschungsgemeinschaft, No. La 315/4-3, La 315/13-1 and La 315/6-1, the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (Center for Interdisciplinary Clinical Research) 01 KS 9602 and the Biomed program of the EU (BMH4-CT96-0602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, P.A., Kempe, D.S., Akel, A. et al. Inhibition of erythrocyte “apoptosis” by catecholamines. Naunyn Schmied Arch Pharmacol 372, 228–235 (2005). https://doi.org/10.1007/s00210-005-0009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-005-0009-2

Keywords

Navigation