Skip to main content
Log in

Class Ia anti-arrhythmic drug ajmaline blocks HERG potassium channels: mode of action

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Ajmaline is a class Ia anti-arrhythmic drug used in several European countries and Japan as first-line treatment for ventricular tachyarrhythmia. Ajmaline has been reported to induce cardiac output (QT) prolongation and to inhibit cardiac potassium currents in guinea pig cardiomyocytes. In order to elucidate the molecular basis of these effects, we examined effects of ajmaline on human ether a-go-go related gene HERG potassium channels. Electrophysiological experiments were performed with human embryonic kidney (HEK) cells (whole-cell patch clamp) and Xenopus oocytes (double-electrode voltage clamp) expressing wild-type and mutant HERG channels. Ajmaline blocked HERG currents with an IC50 of 1.0 μmol/l in HEK cells and 42.3 μmol/l in Xenopus oocytes. The onset of block was fast and reached steady-state conditions after 180 s. The inhibitory effect was completely reversible upon wash-out. In HERG mutant channels Y652A and F656A lacking aromatic residues in the S6 domain, the inhibitory effect of ajmaline was completely abolished. Ajmaline induced a small shift in HERG current half-maximal activation voltage towards more negative potentials. Ajmaline did not markedly affect HERG inactivation. Inhibitory effects were not voltage-dependent. Ajmaline block exhibited positive frequency dependence. Ajmaline blocked HERG channels in the open, but not in the closed states. Binding of ajmaline to inactivated HERG channels may also be possible. In inactivation-deficient HERG S620T channels, the sensitivity to ajmaline was markedly reduced. The IC50 of HERG channel blockade in HEK cells lies within the range of unbound therapeutic plasma concentrations of ajmaline. Therefore, inhibitory effects on HERG channels may contribute to both the high anti-arrhythmic efficacy of ajmaline and to its pro-arrhythmic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arias C, Gonzalez T, Moreno I, Caballero R, Delpon E, Tamargo J, Valenzuela C (2003) Effects of propafenone and its main metabolite, 5-hydroxypropafenone, on HERG channels. Cardiovasc Res 57:660–669

    Article  CAS  PubMed  Google Scholar 

  • Bahnikowa M, Matejovic P, Pasek M, Simurdova M, Simurda J (2002) Ajmaline-induced block of sodium current in rat ventricular myocytes. Scr Med (Brno) 75:169–178

    Google Scholar 

  • Bouffard Y, Roux H, Perrot D, Ducluzeau R, Page Y, Lehot JJ, Bonletreau P, Motin J (1983) Acute ajmaline poisoning. Study of seven cases. Arch Mal Coeur Vaiss 76:771–777

    CAS  PubMed  Google Scholar 

  • Brugada J, Brugada P (1996) What to do in patients with no structural heart disease and sudden arrhythmic death. Am J Cardiol 78:69–75

    Article  CAS  PubMed  Google Scholar 

  • Brugada R, Brugada J, Antzelevitch C, Kirsch GE, Potenza D, Towbin JA, Brugada P (2000) Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation 101:510–515

    CAS  PubMed  Google Scholar 

  • Bussmann WD, Schreiber S, Kaltenbach M (1980) Comparison of antiarrhythmic effects of oral prajmalium bitartrate and intravenous lidocaine in acute myocardial infarction. Am Heart J 99:589–597

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Borggrefe M, Martinez-Rubio A, Hief C, Haverkamp W, Hindricks G, Breithardt G (1994) Efficacy of ajmaline and propafenone in patients with accessory pathways: a prospective randomized study. J Cardiovasc Pharmacol 24:664–669

    CAS  PubMed  Google Scholar 

  • Enomoto K, Imoto M, Nagashima R, Kaneko T, Maruyama T, Kaji Y, Tsuda Y, Kanaya S, Fujino T, Niho Y (1995) Effects of ajmaline on non-sodium ionic currents in guinea-pig ventricular myocytes. Jpn Heart J 36:465–476

    CAS  PubMed  Google Scholar 

  • Eshchar Y, Belhassen B, Laniardo S (1986) Comparison of exercise and ajmaline tests with electrophysiologic study in the Wolff–Parkinson–White syndrome. Am J Cardiol 57:782–786

    Article  CAS  PubMed  Google Scholar 

  • Fernandez D, Ghanta A, Kauffman G, Sanguinetti M (2004) Physical chemical features of the HERG channel drug binding site. J Biol Chem 279:10120–10127

    Article  CAS  PubMed  Google Scholar 

  • Ficker E, Jarolimek W, Kiehn J, Baumann A, Brown AM (1998) Molecular determinants of dofetilide block of HERG K+ channels. Circ Res 82:386–395

    CAS  PubMed  Google Scholar 

  • Haverkamp W, Mönnig G, Kirchhof P, Eckhardt L, Borggrefe M, Breithardt G (1995) Torsade de pointes induced by ajmaline. Z Kardiol 90:586–590

    Article  Google Scholar 

  • Kaul U, Mohan JC, Narula J, Nath CS, Bhatia ML (1985) Ajmaline-induced torsade de pointes. Cardiology 72:140–143

    CAS  PubMed  Google Scholar 

  • Khalilullah M, Sathyamurthy I, Singhal NK (1980) Ajmaline in WPW syndrome: an electrophysiologic study. Am Heart J 99:766–771

    Article  CAS  PubMed  Google Scholar 

  • Kiehn J, Lacerda A, Brown AM (1999a) Pathways of HERG inactivation. Am J Physiol 277:H199–H210

    CAS  PubMed  Google Scholar 

  • Kiehn J, Thomas D, Karle CA, Schöls W, Kübler W (1999b) Inhibitory effects of the class III antiarrythmic drug amiodarone on cloned HERG potassium channels. Naunyn-Schmiedebergs Arch Pharmacol 359:212–219

    CAS  PubMed  Google Scholar 

  • Kolard J, Humhal J, Karetova D, Novak M (1987) Torsade de pointes after mesocaine and ajmaline in a patient with intermittent atrioventricular block. Favourable therapeutic effect of high doses of isoprenaline. Cas Lek Cesk 126:1503–1507

    PubMed  Google Scholar 

  • Köppel C, Wagemann A, Martens F (1989) Pharmacokinetics and antiarrhythmic efficacy of intravenous ajmaline in ventricular arrhythmia of acute onset. Eur J Drug Metab Pharmacokinet 14:161–167

    PubMed  Google Scholar 

  • Körper S, Wink M, Fink RHA (1998) Differential effects of alkaloids on sodium currents of isolated single skeletal muscle fibres. FEBS Lett 436:251–255

    Article  PubMed  Google Scholar 

  • Madeja M, Musshoff U, Speckmann EJ (1997) Follicular tissues reduce drug effects on ion channels in oocytes of Xenopus laevis. Eur J Neurosci 9:599–604

    CAS  PubMed  Google Scholar 

  • Manz M, Mletcko R, Jung W, Luderitz B (1992) Electrophysiological and haemodynamic effects of lidocaine and ajmaline in the management of sustained ventricular tachycardia. Eur Heart J 13:1123–1128

    Google Scholar 

  • Mergenthaler J, Haverkamp W, Hüttenhofer A, Skryabin BV, Musshoff U, Borggrefe M, Speckmann EJ, Breithardt G, Madeja M (2001) Blocking effects of the antiarrhythmic drug propafenone on the HERG potassium channel. Naunyn-Schmiedebergs Arch Pharmacol 363:472–480

    Article  CAS  PubMed  Google Scholar 

  • Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC (2000a) A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci USA 97:12329–12333

    Article  CAS  PubMed  Google Scholar 

  • Mitcheson JS, Chen J, Sanguinetti MC (2000b) Trapping of a methanesulfonanilide by closure of the HERG potassium channel activation gate. J Gen Physiol 115:229–240

    Article  CAS  PubMed  Google Scholar 

  • Padrini R, Piovan D, Javarnaro A, Cucchini F, Ferrari M (1993) Pharmacokinetics and electrophysiological effects of intravenous ajmaline. Clin Pharmacokinet 25:408–414

    CAS  PubMed  Google Scholar 

  • Paul AA, Witchel HJ, Hancox JC (2001) Inhibition of HERG potassium channel current by the class 1a antiarrhythmic agent disopyramide. Biochem Biophys Res Commun 280:1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Paul AA, Witchel HJ, Hancox JC (2002) Inhibition of the current of heterologously expressed HERG potassium channels by flecainide and comparison with quinidine, propafenone and lignocaine. Br J Pharmacol 136:717–729

    CAS  PubMed  Google Scholar 

  • Pearlstein RA, Vaz RJ, Kang J, Chen XL, Preobrazhenskaya M, Shchekotikhin AE, Korolev AM, Lysenkova LN, Miroshnikova OV, Hendrix J, Rampe D (2003) Characterization of HERG potassium channel inhibition using CoMSiA 3D QSAR and homology modelling approaches. Bioorg Med Chem Lett 13:1829–1835

    Article  CAS  PubMed  Google Scholar 

  • Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie J, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG (2003) Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res 58:32–45

    Article  CAS  PubMed  Google Scholar 

  • Ridley JM, Milnes JT, Benest AV, Masters JD, Witchel HJ, Hancox JC (2003) Characterisation of recombinant HERG K+ channel blockade by the class Ia antiarrhythmic drug procainamide. Biochem Biophys Res Commun 306:388–393

    Article  CAS  PubMed  Google Scholar 

  • Roden DM, Balser JR, George AL Jr, Anderson ME (2002) Cardiac ion channels. Annu Rev Physiol 64:431–475

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Chapula JA, Navarro-Polanco RA, Culberson C, Chen J, Sanguinetti MC (2002) Molecular determinants of voltage-dependent human ether-a-gogo related gene (HERG) K+ channel block. J Biol Chem 277:23587–23595

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Chapula JA, Ferrer T, Navarro-Polanco RA, Sanguinetti MC (2003) Voltage dependent profile of human ether-a-gogo-related gene channel block is influenced by a single residue in the S6 transmembrane domain. Mol Pharmacol 63:1051–1058

    Article  CAS  PubMed  Google Scholar 

  • Schmitt C, Brachmann J, Schols W, Beyer T, Kübler W (1989) Proarrhythmic effect of ajmaline in idiopathic ventricular tachycardia. Dtsch Med Wochenschr 114:99–102

    CAS  PubMed  Google Scholar 

  • Scholz EP, Zitron E, Kiesecker C, Lueck S, Kathofer S, Thomas D, Weretka S, Peth S, Kreye VA, Schoels W, Katus HA, Kiehn J, Karle CA (2003) Drug binding to aromatic residues in the HERG channel pore cavity as possible explanation for acquired Long QT syndrome by antiparkinsonian drug budipine. Naunyn-Schmiedebergs Arch Pharmacol 368:404–414

    Article  CAS  PubMed  Google Scholar 

  • Spector PS, Curran ME, Keating MT, Sanguinetti MC (1996) Class III antiarrhythmic drugs block HERG, human cardiac delayed rectifier K+ channel. Open channel block by methanesulfonanilides. Circ Res 78:499–503

    CAS  PubMed  Google Scholar 

  • Thomas D, Wendt-Nordahl G, Rockl K, Ficker E, Brown AM, Kiehn J (2001) High-affinity blockade of human ether-a-go-go-related gene human cardiac potassium channels by the novel antiarrhythmic drug BRL-32872. J Pharmacol Exp Ther 297:753–761

    CAS  PubMed  Google Scholar 

  • Thomas D, Gut B, Wendt-Nordahl G, Kiehn J (2002) The antidepressant drug fluoxetine is an inhibitor of human ether-a-go-go-related gene (HERG) potassium channels. J Pharmacol Exp Ther 300:543–548

    Article  CAS  PubMed  Google Scholar 

  • Wellens HJ, Durrer D (1974) Effect of procainamide, quinidine and ajmaline in the Wolff–Parkinson–White syndrome. Circulation 50:114–121

    CAS  PubMed  Google Scholar 

  • Wilde AA, Antzelevitch C, Borggrefe M, Brugada J, Brugada R, Brugada P, Corrado D, Hauer RN, Kass RS, Nademanee K, Priori SG, Towbin JA (2002) Proposed diagnostic criteria for the Brugada syndrome (consensus report). Eur Heart J 23:1648–1654

    Google Scholar 

  • Zitron E, Karle CA, Wendt-Nordahl G, Kathofer S, Zhang W, Thomas D, Weretka S, Kiehn J (2002) Bertosamil blocks HERG potassium channels in their open and inactivated states. Br J Pharmacol 137:221–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft Ki 663/1-1 to Dr Kiehn and Ka 1714/1-1 to Dr Karle, and by grants from the Novartis-Foundation, from the University of Heidelberg (“AIP+F”) and from the Foundation Cardiology 2000 (Forssman-Scholarship) to Dr Thomas. E. Zitron was supported by the German National Academic Foundation. Data presented here are part of the thesis of C. Kiesecker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph A. Karle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiesecker, C., Zitron, E., Lück, S. et al. Class Ia anti-arrhythmic drug ajmaline blocks HERG potassium channels: mode of action. Naunyn-Schmiedeberg's Arch Pharmacol 370, 423–435 (2004). https://doi.org/10.1007/s00210-004-0976-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-0976-8

Keywords

Navigation