Skip to main content
Log in

9-Ethyladenine derivatives as adenosine receptor antagonists: 2- and 8-substitution results in distinct selectivities

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

9-Ethyladenine was used as the basis for a series of non-xanthine adenosine receptor antagonists at human adenosine receptors. The adenine-based compounds were substituted in 2- or 8-position with a variety of side chains including some aryl or arylalkynyl groups previously tested as 2-substituents in adenosine and 5'-N-ethylcarboxamidoadenosine (NECA) for their effect on agonist affinity. The affinity of the novel compounds was tested in radioligand binding assays (A1, A2A and A3) and inhibition of NECA-stimulated adenylyl cyclase activity (A2B) in membranes prepared from CHO cells stably transfected with the respective human receptor subtype. High affinity antagonists were identified for A1 (9-ethyl-8-phenyl-9H-adenine, compound 2; 6-(1-butylamino)-9-ethyl-8-phenyl-9H-purine, compound 3), A2A (8-ethoxy-9-ethyladenine; compound 8) and A3 (9-ethyl-8-phenylethynyl-9H-adenine, compound 5) with selectivities versus other receptor subtypes in the range of 10 to 600. These results demonstrate that adenine is a useful template for further development of high-affinity antagonists with distinct receptor selectivity profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Klotz K-N, Leung E, Varani K, Gessi S, Merighi S, Borea PA (1999) Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]-pyrimidine derivatives as highly potent and selective human A3 adenosine receptor antagonists. J Med Chem 42:4473–4478

    Article  CAS  PubMed  Google Scholar 

  • Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Moro S, Klotz K-N, Leung E, Varani K, Gessi S, Merighi S, Borea PA (2000) Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]-pyrimidine derivatives as highly potent and selective human A3 adenosine receptor antagonists: Influence of the chain at the N8 pyrazole nitrogen. J Med Chem 43:4768–4780

    Article  CAS  PubMed  Google Scholar 

  • Camaioni E, Costanzi S, Vittori S, Volpini R, Klotz K-N, Cristalli G (1998) New substituted 9-alkylpurines as adenosine receptor ligands. Bioorg Med Chem 6:523–533

    CAS  PubMed  Google Scholar 

  • Cheng Y-C, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    CAS  PubMed  Google Scholar 

  • De Lean A, Hancock AA, Lefkowitz RJ (1982) Validation and statistical analysis of a computer modeling method for quantitative analysis of radioligand binding data for mixtures of pharmacological receptor subtypes. Mol Pharmacol 21:5–16

    PubMed  Google Scholar 

  • Fredholm BB, IJzerman AP, Klotz K-N, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:1–26

    PubMed  Google Scholar 

  • Jiang J, van Rhee AM, Chang L, Patchornik A, Ji X, Evans P, Melman N, Jacobson KA (1997) Structure-activity relationships of 4-(phenylethynyl)-6-phenyl-1,4-dihydropyridines as highly selective A3 adenosine receptor antagonists. J Med Chem 40:2596–2608

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-C, Ji X, Jacobson KA (1996) Derivatives of the triazoloquinazoline adenosine antagonist (CGS15943) are selective for the human A3 receptor subtype. J Med Chem 39:4142–4148

    CAS  PubMed  Google Scholar 

  • Klotz K-N (2000) Adenosine receptors and their ligands. Naunyn-Schmiedebergs Arch Pharmacol 362:382–391

    Google Scholar 

  • Klotz K-N, Hessling J, Hegler J, Owman C, Kull B, Fredholm BB, Lohse MJ (1998) Comparative pharmacology of human adenosine receptor subtypes—characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedebergs Arch Pharmacol 357:1–9

    Google Scholar 

  • Klotz K-N, Camaioni E, Volpini R, Kachler S, Vittori S, Cristalli G (1999) 2-Substituted N-ethylcarboxamidoadenosine derivatives as high-affinity agonists at human A3 adenosine receptors. Naunyn-Schmiedebergs Arch Pharmacol 360:103–108

    Google Scholar 

  • Lohse MJ, Klotz K-N, Diekmann E, Friedrich K, Schwabe U (1988) 2',3'-Dideoxy-N6-cyclohexyladenosine: an adenosine derivative with antagonist properties at adenosine receptors. Eur J Pharmacol 156:157–160

    CAS  PubMed  Google Scholar 

  • Martin PL, Ueeda M, Olsson RA (1993) 2-Phenylethoxy-9-methyladenine: an adenosine receptor antagonist that discriminates between A2 adenosine receptors in the aorta and the coronary vessels from the guinea pig. J Pharmacol Exp Ther 265:248–253

    CAS  PubMed  Google Scholar 

  • Müller CE (2000) Adenosine receptor ligands—recent developments. I. Agonists. Curr Med Chem 7:1269–1288

    PubMed  Google Scholar 

  • Müller CE, Stein B (1996) Adenosine receptor antagonists: structure and potential therapeutic applications. Curr Pharm Des 2:501–530

    Google Scholar 

  • Poulsen S-A, Quinn RJ (1998) Adenosine receptors: new opportunities for future drugs. Bioorg Med Chem 6:619–641

    CAS  PubMed  Google Scholar 

  • Shryock JC, Travagli HC, Belardinelli L (1992) Evaluation of N-0861, (±)-N 6-endonorbornan-2-yl-9-methyladenine, as an A1 subtype-selective adenosine receptor antagonist in the guinea pig isolated heart. J Pharmacol Exp Ther 260:1292–1299

    CAS  PubMed  Google Scholar 

  • Thompson RD, Secuda S, Daly JW, Olsson RA (1991) N6,9-Disubstituted adenines: potent, selective antagonists at the A1 adenosine receptor. J Med Chem 34:2877–2882

    CAS  PubMed  Google Scholar 

  • Van Calenbergh S, von Frijtag Drabbe Künzel J, Blaton NM, Peeters OM, Rozenski J, van Aerschot A, De Bruyn A, De Keukeleire D, IJzerman AP, Herdewijn P (1997) N 6-Cyclopentyl-3'-substituted-xylofuranosyladenosines: a new class of non-xanthine adenosine A1 receptor antagonists. J Med Chem 40:3765–3772

    Article  PubMed  Google Scholar 

  • Van der Wenden EM, von Frijtag Drabbe Künzel J, Mathot RA, Danhof M, IJzerman AP, Soudijn W (1995) Ribose-modified adenosine analogues as potential partial agonists for the adenosine receptor. J Med Chem 38:4000–4006

    PubMed  Google Scholar 

  • Vittori S, Lorenzen A, Stannek C, Costanzi S, Volpini R, Ijzerman AP, von Frijtag Drabbe Künzel J, Cristalli G (2000) N-Cycloalkyl derivatives of adenosine and 1-deazaadenosine as agonists and partial agonists of the A1 adenosine receptor. J Med Chem 43:250–260

    Article  CAS  PubMed  Google Scholar 

  • Volpini R, Costanzi S, Lambertucci C, Taffi S, Vittori S, Klotz K-N, Cristalli G (2002) N6-alkyl-2-alkynyl derivatives of adenosine as potent and selective agonists at the human adenosine A3 receptor and a starting point for searching A2B ligands. J Med Chem 45:3271–3279

    Article  CAS  PubMed  Google Scholar 

  • Williams M, Francis J, Ghai G, Braunwalder A, Psychoyos S, Stone GA, Cash WD (1987) Biochemical characterization of the triazoloquinazoline, CGS 15943, a novel, non-xanthine adenosine antagonist. J Pharmacol Exp Ther 241:415–420

    Google Scholar 

  • Zocchi C, Ongini E, Conti A, Monopoli A, Negretti A, Baraldi PG, Dionisotti S (1996) The non-xanthine heterocyclic compound SCH 58261 is a new potent and selective A2a adenosine receptor antagonist. J Pharmacol Exp Ther 276:398–404

    Google Scholar 

Download references

Acknowledgement

This study was supported by the BIOMED 2 program EURCAR (BMH4-CT98-3474).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Norbert Klotz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klotz, KN., Kachler, S., Lambertucci, C. et al. 9-Ethyladenine derivatives as adenosine receptor antagonists: 2- and 8-substitution results in distinct selectivities. Naunyn-Schmiedeberg's Arch Pharmacol 367, 629–634 (2003). https://doi.org/10.1007/s00210-003-0749-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-003-0749-9

Keywords

Navigation