Skip to main content
Log in

Wall crossing for moduli of stable sheaves on an elliptic surface

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Bridgeland studied moduli of stable sheaves on elliptic surfaces by using Fourier-Mukai transforms. In this paper, we shall study the wall crossing behavior of the moduli of stable sheaves which is a refinement of Bridgeland’s results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartocci, C., Bruzzo, U., Hernández R. D.: Fourier-Mukai and Nahm transforms in geometry and mathematical physics. Progress in Mathematics, 276. Birkhäuser Boston, Inc., Boston, MA, (2009). xvi+423 pp

  2. Bayer, A., Macri, E.: MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones Lagrangian fibrations. Invent Math. 198(3), 505–590 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bernardara, M., Hein, G.: The Euclid-Fourier-Mukai algorithm for elliptic surfaces. Asian J. Math. 18(2), 345–364 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bridgeland, T.: Fourier-Mukai transforms for elliptic surfaces. J. Reine Angew. Math. 498, 115–133 (1998)

    Article  MathSciNet  Google Scholar 

  5. Bridgeland, T.: Stability conditions on K3 surfaces. Duke Math. J. 141, 241–291 (2008). arxiv:math.AG/0307164

    Article  MathSciNet  Google Scholar 

  6. Friedman, R.: Rank two vector bundles over regular elliptic surfaces. Invent. Math. 96(2), 283–332 (1989)

    Article  MathSciNet  Google Scholar 

  7. Friedman, R.: Vector bundles and \(SO(3)\)-invariants for elliptic surfaces. J. Amer. Math. Soc. 8(1), 29–139 (1995)

    MathSciNet  Google Scholar 

  8. Friedman, R.: Algebraic surfaces and holomorphic vector bundles, p. x+328. Universitext. Springer-Verlag, New York (1998)

    Book  Google Scholar 

  9. Göttsche, L., Soergel, W.: Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces. Math. Ann. 296(2), 235–245 (1993)

    Article  MathSciNet  Google Scholar 

  10. Hernández, R.D., Muñoz Porras, J.M.: Stable sheaves on elliptic fibrations. J. Geom. Phys. 43(2–3), 163–183 (2002)

    MathSciNet  Google Scholar 

  11. Jardim, M., Maciocia, A.: A Fourier-Mukai approach to spectral data for instantons. J. Reine Angew. Math. 563, 221–235 (2003)

    MathSciNet  Google Scholar 

  12. Kurihara, K., Yoshioka, K.: Holomorphic vector bundles on non-algebraic tori of dimension 2. Manuscripta Math. 126, 143–166 (2008)

    Article  MathSciNet  Google Scholar 

  13. Liu, W., Lo, J., Martinez, C.: Fourier-Mukai transforms and stable sheaves on Weierstrass elliptic surfaces,arXiv:1910.02477

  14. Matsuki, K., Wentworth, R.: Mumford-Thaddeus principle on the moduli space of vector bundles on an algebraic surface. Internat. J. Math. 8, 97–148 (1997)

    Article  MathSciNet  Google Scholar 

  15. Minamide, H., Yanagida, S., Yoshioka, K.: Some moduli spaces of Bridgeland’s stability conditions. Internat. Math. Res. Notices (2013). https://doi.org/10.1093/imrn/rnt126

    Article  Google Scholar 

  16. O’Grady, K., Moduli of vector-bundles on surfaces, Algebraic geometry-Santa Cruz,: 101–126. Proc. Sympos. Pure Math. 62, 1997 (1995)

  17. Wan, C.-L.: Cohomology theory of birational geometry. J. Diff. Geom. 60, 345–354 (2002)

    MathSciNet  Google Scholar 

  18. Yoshioka, K.: The Betti numbers of the moduli space of stable sheaves of rank 2 on \({\mathbb{P} }^2\). J. reine angew. Math. 453, 193–220 (1994)

    MathSciNet  Google Scholar 

  19. Yoshioka, K.: Some examples of Mukai’s reflections on K3 surfaces. J. Reine Angew. Math. 515, 97–123 (1999)

    Article  MathSciNet  Google Scholar 

  20. Yoshioka, K.: Moduli spaces of stable sheaves on abelian surfaces. Math. Ann. 321, 817–884 (2001)

    Article  MathSciNet  Google Scholar 

  21. Yoshioka, K.: Twisted stability and Fourier-Mukai transform II. Manuscripta Math. 110, 433–465 (2003)

    Article  MathSciNet  Google Scholar 

  22. Yoshioka, K.: Perverse coherent sheaves and Fourier-Mukai transforms on surfaces II. Kyoto J. Math. 55, 365–459 (2015)

    Article  MathSciNet  Google Scholar 

  23. Yoshioka, K.: Moduli spaces of stable sheaves on Enriques surfaces. Kyoto J. Math. 58(4), 865–914 (2018)

Download references

Acknowledgements

The author would like to thank the referee for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kōta Yoshioka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is supported by the Grant-in-aid for Scientific Research (No. 18H01113, 21H04429, 23K03053), JSPS.

Appendix

Appendix

1.1 A category related to \(\lambda \)-stability

We give a remark on the \(\lambda \)-stability. We set \(\lambda :=\frac{d_1-(\alpha \cdot r_1 f)}{(r_1 f \cdot H)}\).

Definition 6.1

  1. (1)

    Let \({\mathcal S}_\lambda \) be the full subcategory of \({\text {Coh}}(X)\) generated by \(\alpha \)-twisted stable sheaves S on a fiber such that \(\frac{\chi _\alpha (S)}{(c_1(S) \cdot H)} \le \lambda \).

  2. (2)

    Let \({\mathcal T}_\lambda \) be the full subcategory of \({\text {Coh}}(X)\) whose object E satisfies \({\text {Hom}}(E, S)=0\) for all \(S \in {\mathcal S}_\lambda \).

  3. (3)

    Let \({\mathcal F}_\lambda \) be the full subcategory of \({\text {Coh}}(X)\) whose objects E fits in an exact sequence

    $$\begin{aligned} 0 \rightarrow S \rightarrow E \rightarrow E_2 \rightarrow 0 \end{aligned}$$

    where \(S \in {\mathcal S}_\lambda \) and \(E_2\) is a torsion free sheaf such that \((E_2)_{\eta }\) is generated by \(\mu \)-semi-stable vector bundles \(F_\eta \) with \(\deg F_\eta /{\text {rk}}F_\eta \le d_1/r_1\).

Let \(Y:=M_H^\alpha (0,r_1 f,d_1)\) be a fine moduli space and \({\mathcal P}\) a universal family on \(X \times Y\), where \((\alpha \cdot f)=0\) and \((H,\alpha )\) is general. Let \(\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }}:\textbf{D}(X) \rightarrow \textbf{D}(Y)\) be the Fourier-Mukai transform by \({\mathcal P}\).

Proposition 6.2

We set \(\lambda :=\frac{\chi _\alpha ({\mathcal P}_{|X \times \{ y\}})}{(r_1 f \cdot H)}=\frac{d_1}{r_1(f \cdot H)}\). Then \(({\mathcal T}_\lambda ,{\mathcal F}_\lambda )\) is a torsion pair. Let \({\mathcal A}_\lambda \) be the tilting. Then \(\Phi _{Y \rightarrow X}^{{\mathcal P}[1]}({\text {Coh}}(Y))={\mathcal A}_\lambda \).

Proof

For \(F \in {\text {Coh}}(Y)\) and an \(\alpha \)-twisted stable sheaf A on a fiber such that \(A \in {\mathcal S}_\lambda \), Lemma 3.5 implies that

$$\begin{aligned} {\text {Hom}}(\Phi _{Y \rightarrow X}^{{\mathcal P}[1]}(F),A)={\text {Hom}}(F,\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }}(A(K_X))[1])=0. \end{aligned}$$

For an \(\alpha \)-twisted stable sheaf A on a fiber such that \(\frac{\chi _\alpha (A)}{(c_1(A) \cdot H)} > \frac{\chi _\alpha ({\mathcal P}_{|X \times \{ y\}})}{(r_1 f \cdot H)}\),

$$\begin{aligned} {\text{ Hom }}(A,\Phi _{Y \rightarrow X}^{{\mathcal P}}(F))={\text{ Hom }}(\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }}(A)[1],F[-1])=0. \end{aligned}$$

We also note that \(H^i(\Phi _{Y \rightarrow X}^{{\mathcal P}[1]}(F))=0\) for \(i \ne -1,0\). By using these facts and [4, sect. 6.2], we shall prove that \(({\mathcal T},{\mathcal F})\) is a torsion pair and \({\mathcal A}=\Phi _{Y \rightarrow X}^{{\mathcal P}[1]}({\text {Coh}}(Y))\).

For \(E \in {\text {Coh}}(X)\), [4, sect. 6.2] implies

$$\begin{aligned} \begin{aligned}&H^i(\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }[1]}(E(K_X))) =0,\; i \ne 0,1,\\&E_1:=\Phi _{Y \rightarrow X}^{{\mathcal P}[1]}(H^0(\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }[1]}(E(K_X)))) \in {\text {Coh}}(X),\\&E_2:=\Phi _{Y \rightarrow X}^{{\mathcal P}}(H^1(\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }[1]}(E))) \in {\text {Coh}}(X). \end{aligned} \end{aligned}$$
(6.1)

We also have an exact sequence

$$\begin{aligned} 0 \rightarrow E_1 \rightarrow E \rightarrow E_2 \rightarrow 0. \end{aligned}$$

Then by using [4, Lem. 6.2], we see that

$$\begin{aligned} E_1 \in {\mathcal T}_\lambda ,\; E_2 \in {\mathcal F}_\lambda . \end{aligned}$$

Thus we have a desired decomposition of E. We also get \(\Phi _{Y \rightarrow X}^{{\mathcal P}[1]}({\text {Coh}}(Y))={\mathcal A}_\lambda \). \(\square \)

For an object \(E \in {\mathcal A}_\lambda \cap {\text {Coh}}(X)\), the condition Definition 3.1 (3) implies E is an torsion free object of \({\mathcal A}_\lambda \).

1.2 Fourier-Mukai transforms and the \(\lambda \)-stability

In this subsection, we shall refine Proposition 3.9. Assume that \((\alpha \cdot f)=0\). Let \(\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }}:\textbf{D}(X) \rightarrow \textbf{D}(Y)\) be the Fourier-Mukai transform in subsection 1.1. As we explained in subsection 1.1, we take a locally free sheaf G such that \(\frac{c_1(G)}{{\text {rk}}G}=\alpha +\frac{d_1 H}{r_1 (f \cdot H)}\). Then \(\chi (G,{\mathcal P}_{|X \times \{ y\}})=0\) (\(y \in Y\)). We set \(\tau ({\mathcal P}^{\vee }_{|\{ x \} \times Y}[1])=(0,r_1' f, d_1')\). We also define a locally free sheaf \(G':=\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }}({\mathcal O}_H)[1]\) and set \(H':=c_1(\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }}(G)[2])\). We set \(\alpha ':=\frac{c_1(G')}{{\text {rk}}G'}-\frac{d_1' H'}{r_1' (f \cdot H')}\). Since \(\frac{(c_1(G') \cdot f)}{{\text {rk}}G'}=\frac{d_1'}{r_1'}\), \((\alpha ' \cdot f)=0\).

For \(\lambda _0=\frac{d_0-(\alpha \cdot r_0 f)}{(r_0 f \cdot H)}=\frac{d_0}{r_0 (f \cdot H)}\) such that \(r_0 \in {\mathbb Z}_{>0}\), \(d_0 \in {\mathbb Z}\) and \(\gcd (r_0,d_0)=1\), we take an \(\alpha \)-twisted stable sheaf P with \(\tau (P)=(0,r_0 f,d_0)\). We set \(\varphi (\lambda _0):=\frac{\chi _{\alpha '}(P')}{(c_1(P') \cdot H')}= \frac{\chi (G',P')}{{\text {rk}}G' (c_1(P') \cdot H')}-\frac{d_1'}{r_1'(f \cdot H')}\), where \(P'=\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }[1]}(P)\) and \(\tau (P')=(0,r'_0 f,d_0')\). We regard \(\lambda \in (-\infty ,\infty )\) as an element of \({\mathbb P}_{\mathbb R}^1 \cong S^1\). Then \(\varphi \) is extened to an isomorphism of \({\mathbb P}_{\mathbb R}^1\), where \(\varphi (\infty )= \frac{\chi _{\alpha '}({\mathcal P}^{\vee }_{|\{x \} \times Y}[1])}{(c_1({\mathcal P}^{\vee }_{|\{x \} \times Y}[1])) \cdot H')}=\frac{d_1'}{r_1' (f \cdot H')}\).

Proposition 6.3

Assume that \(\gcd ((\xi \cdot f),r)=1\) and \(r_1(\xi \cdot f)-rd_1>0\). We assume that \(\lambda _0=\frac{d_0-(\alpha \cdot r_0 f)}{(r_0 f \cdot H)} >\lambda _1=\frac{d_1-(\alpha \cdot r_1 f)}{(r_1 f \cdot H)}\). Then for a \(\lambda _0\)-stable sheaf E, \(E':=\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }[1]}(E)\) is \(\varphi (\lambda _0)\)-stable. Thus we have an isomorphism

$$\begin{aligned} \Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }[1]}: {\mathcal M}^{\lambda _0}(\textbf{e})^s \rightarrow {\mathcal M}^{\varphi (\lambda _0)}(\textbf{e}')^s, \end{aligned}$$

where \(\textbf{e}'=\tau (E')\).

Proof

Let \(A'\) be an \(\alpha '\)-twisted stable sheaf on a fiber. We shall prove the following.

  1. (i)

    If \(\frac{\chi _{\alpha '}(A')}{(c_1(A') \cdot H')}>\varphi (\lambda _0)\), then \({\text {Hom}}(A',E')=0\).

  2. (ii)

    If \(\frac{\chi _{\alpha '}(A')}{(c_1(A') \cdot H')} \le \varphi (\lambda _0)\), then \({\text {Hom}}(E',A')=0\).

(i) If \(\frac{\chi _{\alpha '}(A')}{(c_1(A') \cdot H')}>\varphi (\infty )=\frac{d_1'}{r_1' (f \cdot H')}\), then there is an \(\alpha \)-twisted stable 1-dimensional sheaf A such that \(A'=\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }[1]}(A[1])\) and \(\frac{\chi _{\alpha }(A)}{(c_1(A) \cdot H)}<\lambda _1\) (see Lemma 1.5 and Remark 1.6). Hence \({\text {Hom}}(A',E')={\text {Hom}}(A[1],E)=0\). If \(\varphi (\infty )> \frac{\chi _{\alpha '}(A')}{(c_1(A') \cdot H')}>\varphi (\lambda _0)\), then there is an \(\alpha \)-twisted stable 1-dimensional sheaf A such that \(A'=\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }[1]}(A)\) and \(\frac{\chi _{\alpha }(A)}{(c_1(A) \cdot H)}>\lambda _0\). Hence \({\text {Hom}}(A',E')={\text {Hom}}(A,E)=0\). If \(\varphi (\infty )=\frac{\chi _{\alpha '}(A')}{(c_1(A') \cdot H')}\), then \({\text {Hom}}(A',E')={\text {Hom}}({\mathbb C}_x,E)=0\).

(ii) If \(\frac{\chi _{\alpha '}(A')}{(c_1(A') \cdot H')} \le \varphi (\lambda _0)\), then there is an \(\alpha \)-twisted stable 1-dimensional sheaf A such that \(A'=\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }[1]}(A)\) and \(\frac{\chi _{\alpha }(A)}{(c_1(A) \cdot H)} \le \lambda _0\). Hence \({\text {Hom}}(E',A')={\text {Hom}}(E,A)=0\). \(\square \)

We also have the following result.

Proposition 6.4

Assume that \(r_1(\xi \cdot f)-rd_1>0\). We set \(\psi (\lambda _0):=\frac{\chi _{-\alpha '}({P'}^{\vee }[1])}{(c_1({P'}^{\vee }[1]) \cdot H')} =-\frac{\chi _{\alpha '}(P')}{(c_1(P') \cdot H')}\). Assume that \(\lambda _0<\lambda _1\). Then for a \(\lambda _0\)-stable sheaf E, \(E'':=\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }[1]}(E)^{\vee }\) satisfies the following.

  1. (i)

    For a \((-\alpha ')\)-stable fiber sheaf \(A''\) with \(\psi (\lambda _0) \le \frac{\chi _{-\alpha '}(A'')}{(c_1(A'') \cdot H)}\), \({\text {Hom}}(A'',E'')=0\).

  2. (ii)

    For a \((-\alpha ')\)-stable fiber sheaf \(A''\) with \(\psi (\lambda _0) > \frac{\chi _{-\alpha }(A'')}{(c_1(A'') \cdot H)}\), \({\text {Hom}}(E'',A'')=0\).

In particular if \(\lambda _0\) is general, then \(E''\) is \(\psi (\lambda _0)\)-stable.

Proof

(i) Assume that \(\psi (\lambda _0) \le \frac{\chi _{-\alpha '}(A'')}{(c_1(A'') \cdot H)}< \psi (\infty )=\frac{-d_1'+(\alpha ' \cdot r_1' f)}{r_1' (f \cdot H)}\). Then \(A''=\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }[2]}(A)^{\vee }[1]\) and \(\frac{\chi _\alpha (A)}{(c_1(A) \cdot H)} \le \lambda _0\). Hence \({\text {Hom}}(A'',E'')={\text {Hom}}(E,A)=0\). Assume that \(\psi (\infty ) \le \frac{\chi _{-\alpha '}(A'')}{(c_1(A'') \cdot H)}\). Then \(A''=\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }[1]}(A)^{\vee }[1]\). Hence \({\text {Hom}}(A'',E'')={\text {Hom}}(E[1],A)=0\).

(ii) Assume that \(\psi (\lambda _0) > \frac{\chi _{-\alpha }(A'')}{(c_1(A'') \cdot H)}\). Then \(A''=\Phi _{X \rightarrow Y}^{{\mathcal P}^{\vee }[2]}(A)^{\vee }[1]\) and \(\frac{\chi _\alpha (A)}{(c_1(A) \cdot H)} > \lambda _0\). Hence \({\text {Hom}}(E'',A'')={\text {Hom}}(A,E)=0\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshioka, K. Wall crossing for moduli of stable sheaves on an elliptic surface. Math. Z. 306, 17 (2024). https://doi.org/10.1007/s00209-023-03410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03410-7

Keywords

Mathematics Subject Classification

Navigation