Skip to main content
Log in

Torelli theorems for some Steiner bundles

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. The statement in [14] actually involves \(K_{r-1,1}\) of the homogeneous coordinate ring of X, but this is isomorphic to the stated group. See also [3, Lemma 3.29] for another exposition.

References

  1. Ancona, V., Ottaviani, G.: Unstable hyperplanes for Steiner bundles and multidimensional matrices. Adv. Geom. 1, 165–192 (2001)

    Article  MathSciNet  Google Scholar 

  2. Angelini, E.: Logarithmic bundles of hyperplane arrangements in \(\textbf{P} ^n\). Collect. Math. 65, 285–302 (2014)

    Article  MathSciNet  Google Scholar 

  3. Aprodu, M., Nagel, J.: Koszul Cohomology and Algebraic Geometry. AMS University Lecture Series 52 (2010)

  4. Arrondo, E.: Schwarzenberger bundles of arbitrary rank on the projective space. J. Lond. Math. Soc 82, 697–716 (2010)

    Article  MathSciNet  Google Scholar 

  5. Arrondo, E., Marchesi, S.: Jumping pairs of Steiner bundles. Forum Math. 27, 3233–3267 (2015)

    Article  MathSciNet  Google Scholar 

  6. Ballico, E., Huh, S., Malaspina, F.: A Torelli-type problem for logarithmic bundles over projective varieties. Quart. J. Math. 66, 417–436 (2015)

    Article  MathSciNet  Google Scholar 

  7. Coskun, I., Huizenga, J., Smith, G.: Stability and cohomology of kernel bundles on projective space. arXiv preprint (2022). arXiv:2204.10247

  8. Dolgachev, I., Kapranov, M.: Arrangements of hyperplanes and vector bundles on \(\textbf{P} ^n\). Duke Math. J. 71, 633–664 (1993)

    Article  MathSciNet  Google Scholar 

  9. Ein, L.: The ramification divisors for branched coverings of \(\textbf{P} ^n\). Math. Ann. 261, 483–485 (1982)

    Article  MathSciNet  Google Scholar 

  10. Ein, L.: Normal sheaves of linear systems on curves. Contemp. Math. 116, 9–18 (1991)

    Article  MathSciNet  Google Scholar 

  11. Ein, L., Lazarsfeld, R.: Lectures on the syzygies and geometry of algebraic varieties (in preparation)

  12. Ellia, P., Hirschowitz, A., Manivel, L.: Problème de Brill–Noether pour les fibrés de Steiner. Ann. Sci. ENS 32, 835–857 (1999)

    Google Scholar 

  13. Faenzi, D., Matei, D., Vallès, J.: Hyperplane arrangements of Torelli type. Compos. Math. 149, 309–332 (2013)

    Article  MathSciNet  Google Scholar 

  14. Green, M.: Koszul cohomoligy and the geometry of projective varieties. J. Differ. Geom. 19, 125–171 (1984)

    Article  Google Scholar 

  15. Huizenga, J.: Restrictions of Steiner bundles and divisors on the Hilbert scheme of points in the plane. Int. Math. Res. Not. 21, 4829–4873 (2013)

    Article  MathSciNet  Google Scholar 

  16. Lazarsfeld, R.: Positivity in Algebraic Geometry. Springer, Berlin (2004)

    Book  Google Scholar 

  17. Ueda, K., Yoshinaga, M.: Logarithmic vector fields along smooth divisors in projective spaces. Hokkaido Math. J. 28, 409–415 (2009)

    MathSciNet  Google Scholar 

  18. Vallès, J.: Nombre maximal d’hyperplans instables pour un fibré de Steiner. Math. Z. 233, 507–514 (2000)

    Article  MathSciNet  Google Scholar 

  19. Vallès, J.: Fibrés de Schwarzenberger et fibrés logarithmiques généralisés. Math. Z. 268, 1013–1023 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Sheridan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of the first author partially supported by NSF Grant DMS-1739285.

Appendix A: The theorem of Dolgachev–Kapranov

Appendix A: The theorem of Dolgachev–Kapranov

Let \(X \subseteq \textbf{P}(V) = \textbf{P}^r \) be a finite set of \(d \ge r+1\) points in linear general position, and denote by \(\mathcal {I}= \mathcal {I}_X \subseteq \mathcal {O}_{\textbf{P}(V)}\) the ideal sheaf of X. Green shows in [14, Theorem (3.c.6)] that \(K_{r-2, 2}(\textbf{P}^r, \mathcal {I}; V) \ne 0\) if and only if X lies on a rational normal curve.Footnote 1 Given the arguments from the previous section, it is natural to expect that one can use this to get a new proof of the Torelli-type theorem of Dolgachev and Kapranov from [8] (along with the numerical improvements by Vallès [18]). Inspired by some of the techniques in [14], we indicate here how this goes. For simplicity we assume that \(r \ge 3\).

Note to begin with that each \( H_{*}^{{i}} \big ( {\textbf{P}(V)} , {\mathcal {I}}\big ) =_{\text {def}} \oplus _k\, H^{{i}} \big ( {\textbf{P}(V)} , {\mathcal {I}(k)}\big ) \) is a graded module over the symmetric algebra \(\text {Sym}(V)\). In particular, there is a natural map

$$\begin{aligned} H^{{1}} \big ( {\textbf{P}(V)} , {\mathcal {I}}\big ) \otimes V \longrightarrow H^{{1}} \big ( {\textbf{P}(V)} , {\mathcal {I}(1)}\big ) \end{aligned}$$
(A.1)

On the other hand, every point \(x \in X\subseteq \textbf{P}(V)\) determines a dual hyperplane , and so X itself gives rise to a normal crossing hyperplane arrangement \(\Sigma H_i\) on . One checks that the Dolgachev–Kapranov bundle is the Steiner bundle on determined by the multiplication map

$$\begin{aligned} H^{{1}} \big ( {\textbf{P}(V)} , {\mathcal {I}(1)}\big ) ^* \otimes V \longrightarrow H^{{1}} \big ( {\textbf{P}(V)} , {\mathcal {I}}\big ) ^*, \end{aligned}$$

deduced from (A.1). It is elementary that \(X \subseteq \text {Vall}\grave{\text {e}}\text {s}(E)\), and we want to verify

Proposition A.1

If \(X \subsetneqq \text {Vall}\grave{\text {e}}\text {s}(E)\), then X lies on a rational normal curve in \(\textbf{P}({V})\).

Equivalently, fix a subspace \(W \subseteq V\) of codimension one that generates \(\mathcal {O}_X\). In view of Lemma 1.2, we need to show that if the mapping

$$\begin{aligned} H^{{1}} \big ( {\textbf{P}(V)} , {\mathcal {I}_X(1)}\big ) ^* \otimes W \longrightarrow H^{{1}} \big ( {\textbf{P}(V)} , {\mathcal {I}_X}\big ) ^* \end{aligned}$$
(A.2)

fails to be surjective, then X lies on a rational normal curve.

Since \(W \subseteq V\), each \(H_{*}^{{i}} \big ( {\textbf{P}(V)} , {\mathcal {I}}\big ) \) has the structure of a \(\text {Sym}(W)\)-module. The first point is that in bounded degrees, one can realize these as the cohomology modules of a sheaf \(\mathcal {J}\) on \(\textbf{P}(W)\). Specifically:

Lemma A.2

For any suitably large integer \(k_0 \gg 0\) one can construct a coherent sheaf \(\mathcal {J}\) on \(\textbf{P}(W)\) with the property that for \(i < r-1 = \dim \textbf{P}(W)\) there are isomorphisms

$$\begin{aligned} H_{*}^{{i}} \big ( {\textbf{P}(V)} , {\mathcal {I}}\big ) _{\le k_0} \ \cong \ H_{*}^{{i}} \big ( {\textbf{P}(W)} , {\mathcal {J}}\big ) _{\le k_0} \end{aligned}$$

in degrees \(\le k_0\), and these isomorphisms are compatible with the \(\text {Sym}(W)\)-module structures on both sides.

Granting the Lemma for the time being, we give the

Proof of Proposition A.1

Tensoring the universal Koszul complex on \(\textbf{P}(W)\) by \(\mathcal {J}\), one arrives at a long exact sequence

$$\begin{aligned} 0 \longrightarrow \Lambda ^r W \otimes \mathcal {J}\longrightarrow \Lambda ^{r-1}W \otimes \mathcal {J}(1) \longrightarrow \Lambda ^{r-2}W \otimes \mathcal {J}(2) \longrightarrow \ldots \longrightarrow \mathcal {J}(r)\longrightarrow 0 \end{aligned}$$

of sheaves on \(\textbf{P}(W)\). This in turn gives rise to a hypercohomology spectral sequence abutting to zero. The bottom two rows of its \(E_1\) page have the form

where the cohomology groups are taken on \(\textbf{P}(W)\). The assumption (A.2) means (thanks to the Lemma) that the map

$$\begin{aligned} H^1(\mathcal {I}) \, = \, \Lambda ^r W \otimes H^1(\mathcal {J}) \longrightarrow \Lambda ^{r-1} W \otimes H^1(\mathcal {J}(1)) \, = \, W^* \otimes H^1(\mathcal {I}(1)) \end{aligned}$$

has a non-trivial kernel. This must cancel against the \(E_2\) term coming from the bottom row of the spectral sequence. In other words,

$$\begin{aligned} K_{r-2,2}(\textbf{P}(W), \mathcal {J}) \ \ne \ 0. \end{aligned}$$

But \(K_{r-2,1}(\textbf{P}(W), \mathcal {J}) = 0\) since X does not lie on a hyperplane, so by (the analogue of) Lemma 2.1 (ii), we conclude that \(K_{r-2,2}(\textbf{P}(V), \mathcal {I}) \ne 0\). Then Green’s theorem applies to put X on a rational normal curve. \(\square \)

Proof of Lemma A.2

Let \(w \in \textbf{P}(V)\) be the point corresponding to \(W \subseteq V\), so that in particular \(w \not \in X\). Projection \( \pi : \big ( \textbf{P}(V) - \{ w \}\big ) \longrightarrow \textbf{P}(W) \) from w gives an identification

$$\begin{aligned} \textbf{P}(V) - \{ w \} \ \cong \ \text {Spec}_{\textbf{P}(W)}\Big (\text {Sym}\big ( \mathcal {O}_{\textbf{P}(W)} \oplus \mathcal {O}_{\textbf{P}(W)}(-1) \big ) \Big ). \end{aligned}$$

Then for \(k_0 \gg 0\), one arrives at a surjective mapping

$$\begin{aligned} \varepsilon : \text {Sym}^{k_0} \big ( \mathcal {O}_{\textbf{P}(W)} \oplus \mathcal {O}_{\textbf{P}(W)}(-1) \big ) \longrightarrow \pi _* \mathcal {O}_X \end{aligned}$$

of sheaves on \(\textbf{P}(W)\). It suffices to take \(\mathcal {J}= \ker (\varepsilon )\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarsfeld, R., Sheridan, J. Torelli theorems for some Steiner bundles. Math. Z. 306, 19 (2024). https://doi.org/10.1007/s00209-023-03399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03399-z

Navigation