Skip to main content
Log in

Mahler’s question for intrinsic Diophantine approximation on triadic Cantor set: the divergence theory

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we consider Mahler’s question for intrinsic Diophantine approximation on the triadic Cantor set \(\mathcal {K}\), i.e., approximating the points in \(\mathcal {K}\) by rational numbers inside \(\mathcal {K}\):

$$\begin{aligned} {\mathcal {W}}_{\mathcal {K}}(\psi ):=\left\{ x\in \mathcal {K}: |x-p/q|<\psi (q), \, {\text {for infinitely many}}\ p/q\in \mathcal {K}\right\} . \end{aligned}$$

By using the intrinsic denominator \(q_{{\text {int}}}\) instead of the regular denominator q of a rational \(p/q\in \mathcal {K}\) in \(\psi (\cdot )\), we present a complete metric theory for this variant of the set \(\mathcal {W}_{\mathcal {K}}(\psi )\), which yields a divergence theory of Mahler’s question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This is a dataless paper. No data, models, or code were generated or used during the study.

References

  1. Allen, D., Chow, S., Yu, H.: Dyadic approximation in the middle-third Cantor set. Sel. Math. (N. S.) 29(1), 49 (2023) (Paper No. 11)

  2. Allen, D., Bárány, B.: On the Hausdorff measure of shrinking target sets on self-conformal sets. Mathematika 67(4), 807–839 (2021)

    Article  MathSciNet  Google Scholar 

  3. Baker, S.: An analogue of Khintchine’s theorem for self-conformal sets. Math. Proc. Camb. Philos. Soc. 167(3), 567–597 (2019)

    Article  MathSciNet  Google Scholar 

  4. Beresnevich, V., Dickinson, D., Velani, S.: Measure theoretic laws for lim sup sets. Mem. Am. Math. Soc. 179(846), x+91 (2006)

    MathSciNet  Google Scholar 

  5. Beresnevich, V., Velani, S.: A mass transference principle and the Dufn–Schaefer conjecture for Hausdorff measures. Ann. Math. (2) 164(3), 971–992 (2006)

    Article  MathSciNet  Google Scholar 

  6. Broderick, R., Bugeaud, Y., Fishman, L., Kleinbock, D., Weiss, B.: Schmidt’s game, fractals, and numbers normal to no base. Math. Res. Lett. 17(2), 307–321 (2010)

    Article  MathSciNet  Google Scholar 

  7. Broderick, R., Fishman, L., Kleinbock, D., Reich, A., Weiss, B.: The set of badly approximable vectors is strongly \(C^1\) incompressible. Math. Proc. Camb. Philos. Soc. 153(2), 319–339 (2012)

    Article  Google Scholar 

  8. Broderick, R., Fishman, L., Reich, A.: Intrinsic approximation on Cantor-like sets, a problem of Mahler. Mosc. J. Comb. Number Theory 1(4), 3–12 (2011)

    MathSciNet  Google Scholar 

  9. Bugeaud, Y.: Diophantine approximation and Cantor sets. Math. Ann. 341(3), 677–684 (2008)

    Article  MathSciNet  Google Scholar 

  10. Bugeaud, Y., Durand, A.: Metric Diophantine approximation on the middle-third Cantor set. J. Eur. Math. Soc. (JEMS) 18(6), 1233–1272 (2016)

    Article  MathSciNet  Google Scholar 

  11. Chung, K., Erdős, P.: On the application of the Borel–Cantelli lemma. Trans. Am. Math. Soc. 72, 179–186 (1952)

    Article  MathSciNet  Google Scholar 

  12. Chung, K.: A Course in Probability Theory, Probability and Mathematical Statistics, vol. 21, pp. 7–365. Academic Press, New York (1974)

    Google Scholar 

  13. Einsiedler, M., Fishman, L., Shapira, U.: Diophantine approximations on fractals. Geom. Funct. Anal. 21(1), 14–35 (2011)

    Article  MathSciNet  Google Scholar 

  14. Fishman, L.: Schmidt’s game on fractals. Isr. J. Math. 171, 77–92 (2009)

    Article  MathSciNet  Google Scholar 

  15. Fishman, L., Simmons, D.: Intrinsic approximation for fractals defined by rational iterated function systems: Mahler’s research suggestion. Proc. Lond. Math. Soc. (3) 109(1), 189–212 (2014)

    Article  MathSciNet  Google Scholar 

  16. Fishman, L., Simmons, D.: Extrinsic Diophantine approximation on manifolds and fractals. J. Math. Pures Appl. (9) 104(1), 83–101 (2015)

    Article  MathSciNet  Google Scholar 

  17. Jarník, V.: Diophantischen Approximationen und Hausdorffsches Mass. Mat. Sb. 36, 371–381 (1929)

    Google Scholar 

  18. Khintchine, A.: Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen. Math. Ann. 92, 115–125 (1924)

    Article  MathSciNet  Google Scholar 

  19. Khalil, O., Luethi, M.: Random Walks, spectral Gaps, and Khintchine’s theorem on fractals. Invent. Math. 232, 713–831 (2023)

    Article  MathSciNet  Google Scholar 

  20. Kleinbock, D.: Diophantine properties of measures and homogeneous dynamics. Pure Appl. Math. Q. 4(1) (2008). Special Issue: In honor of Grigory Margulis. Part 2, 81–97

  21. Kleinbock, D., Lindenstrauss, E., Weiss, B.: On fractal measures and Diophantine approximation. Sel. Math. (N.S.) 10(4), 479–523 (2004)

    Article  MathSciNet  Google Scholar 

  22. Kleinbock, D., Weiss, B.: Badly approximable vectors on fractals. Probability in mathematics. Isr. J. Math. 149, 137–170 (2005)

    Article  Google Scholar 

  23. Koukoulopoulos, D., Maynard, J.: On the Duffin–Schaeffer conjecture. Ann. Math. 192, 251–307 (2020)

    Article  MathSciNet  Google Scholar 

  24. Kristensen, S.: Approximating numbers with missing digits by algebraic numbers. Proc. Edinb. Math. Soc. (2) 49(3), 657–666 (2006)

    Article  MathSciNet  Google Scholar 

  25. Kristensen, S., Thorn, R., Velani, S.: Diophantine approximation and badly approximable sets. Adv. Math. 203, 132–169 (2006)

    Article  MathSciNet  Google Scholar 

  26. Levesley, J., Salp, C., Velani, S.: On a problem of K. Mahler: Diophantine approximation and Cantor sets. Math. Ann. 338(1), 97–118 (2007)

    Article  MathSciNet  Google Scholar 

  27. Mahler, K.: Some suggestions for further research. Bull. Austral. Math. Soc. 29, 101–108 (1984)

    Article  MathSciNet  Google Scholar 

  28. Pollington, A., Velani, S.: Metric Diophantine approximation and “absolutely friendly’’ measures. Sel. Math. (N.S.) 11(2), 297–307 (2005)

    Article  MathSciNet  Google Scholar 

  29. Rahm, A., Solomon, N., Trauthwein, T., Weiss, B.: The distribution of rational numbers on Cantor’s middle thirds set. Unif. Distrib. Theory 15(2), 73–92 (2020)

    Article  MathSciNet  Google Scholar 

  30. Schleischitz, J.: On intrinsic and extrinsic rational approximation to Cantor sets. Ergod. Th. Dynam. Sys. 41(5), 1560–1589 (2021)

    Article  MathSciNet  Google Scholar 

  31. Simmons, D., Weiss, B.: Random walks on homogeneous spaces and Diophantine approximation on fractals. Invent. Math. 216(2), 337–394 (2019)

    Article  MathSciNet  Google Scholar 

  32. Sprindžuk, V.: Metric Theory of Diophantine Approximations. V. H. Winston & Sons, Washington, DC (1979)

    Google Scholar 

  33. Weiss, B.: Almost no points on a Cantor set are very well approximable. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457(2008), 949–952 (2001)

    Article  MathSciNet  Google Scholar 

  34. Yu, H.: Rational points near self-similar sets. arXiv:2101.05910

Download references

Acknowledgements

The authors show their sincere appreciations to Professor Teturo Kamae (Osaka City University) on the discussion of the proof of Lemma 4.1, and the anonymous referee for extremely careful reading and helpful suggestions. This work is supported by NSFC of China (Grant Nos. 12171172 and 12331005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baowei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, B., Wang, B. & Wu, J. Mahler’s question for intrinsic Diophantine approximation on triadic Cantor set: the divergence theory. Math. Z. 306, 2 (2024). https://doi.org/10.1007/s00209-023-03397-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03397-1

Keywords

Mathematics Subject Classification

Navigation