Skip to main content
Log in

Birational geometry of Beauville–Mukai systems I: the rank three and genus two case

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study wall-crossing for the Beauville–Mukai system of rank three on a general genus two K3 surface. We show that such a system is related to the Hilbert scheme of ten points on the surface by a sequence of flops, whose exceptional loci can be described as Brill–Noether loci. We also obtain Brill–Noether type results for sheaves in the Beauville–Mukai system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We are grateful to Nicolas Addington for verifying our calculations using a package he has developed for Macaulay2, https://pages.uoregon.edu/adding/K3nCones.pdf. Specifically, this package computes walls of the movable and nef cones of varieties of \(K3^{[n]}\)-type, as described in [2, Theorem 12.1 and Theorem 12.3] which is exactly what we are doing here.

References

  1. Bayer, A., Macrì, E.: Projectivity and birational geometry of Bridgeland moduli spaces. J. Am. Math. Soc. 27(3), 707–752 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayer, A., Macrì, E.: MMP for moduli space of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations. Invent. Math. 198(3), 505–590 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayer, A., Macrì, E.: The unreasonable effectiveness of wall-crossing in algebraic geometry (2022), to appear in the Proceedings of the ICM 2022. arXiv:2201.03654

  4. Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18(4), 755–782 (1983)

    Article  MATH  Google Scholar 

  5. Beauville, A.: Systèmes hamiltoniens complètement intégrables associés aux surfaces K3, Problems in the Theory of Surfaces and Their Classification (Cortona, 1988), pp. 25–31, Sympos. Math. XXXII. Academic Press, London (1991)

  6. Beauville, A.: Counting rational curves on K3 surfaces. Duke Math. J. 97(1), 99–108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. (2) 166(2), 317–345 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bridgeland, T.: Stability conditions on \(K3\) surfaces. Duke Math. J. 141(2), 241–291 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cattaneo, A.: Automorphisms of Hilbert schemes of points on a generic projective K3 surface. Math. Nachr. 292(10), 2137–2152 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donagi, R., Ein, L., Lazarsfeld, R.: Nilpotent Cones and Sheaves on K3 Surfaces, Birational Algebraic Geometry (Baltimore, MD, 1996), pp. 51–61, Contemporary Mathematics, vol. 207. Amer. Math. Soc., Providence (1997)

  11. Franciosi, M., Tenni, E.: On Clifford’s theorem for singular curves. Proc. Lond. Math. Soc. 108(1), 225–252 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fu, B.: Abelian fibrations on \(S^{[n]}\). C. R. Math. Acad. Sci. Paris 337(9), 593–596 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fujiki, A.: On primitively symplectic compact Kähler V-manifolds of dimension four. In: Classification of Algebraic and Analytic Manifolds (Katata, 1982), pp. 71–250, Progress in Mathematics, vol. 39. Birkhäuser Boston, Boston (1983)

  14. Happel, D., Reiten, I., Smalø, S.: Tilting in Abelian Categories and Quasitilted Algebras. Mem. Amer. Math. Soc., Providence (1996)

    Book  MATH  Google Scholar 

  15. Hartshorne, R.: Algebraic Geometry. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  16. Hassett, B., Tschinkel, Y.: Abelian fibrations and rational points on symmetric products. Int. J. Math. 11(9), 1163–1176 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hassett, B., Tschinkel, Y.: Moving and ample cones of holomorphic symplectic fourfolds. Geom. Funct. Anal. 19(4), 1065–1080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hellmann, I.: Birational geometry of the Mukai system of rank two and genus two. Doc. Math. 27, 2691–2720 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Huybrechts, D.: Compact hyperkähler manifolds. In: Calabi–Yau manifolds and related geometries (Nordfjordeid, 2001), pp. 161–225. Universitext, Springer, Berlin (2003)

  20. Huybrechts, D.: Fourier–Mukai Transforms in Algebraic Geometry. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  21. Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves, 2nd edn. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  22. Iliev, A., Ranestad, K.: The abelian fibration on the Hilbert cube of a K3 surface of genus 9. Int. J. Math. 18(1), 1–26 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaledin, D., Lehn, M., Sorger, Ch.: Singular symplectic moduli spaces. Invent. Math. 164(3), 591–614 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Markman, E.: Brill–Noether duality for moduli spaces of sheaves on K3 surfaces. J. Algebr. Geom. 10(4), 623–694 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Markushevich, D.: Lagrangian families of Jacobians of genus 2 curves. J. Math. Sci. 82(1), 3268–3284 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Markushevich, D.: Some algebro-geometric integrable systems versus classical ones. The Kowalevski property (Leeds, 2000), pp. 197–218, CRM Proceedings of Lecture Notes 32. Amer. Math. Soc., Providence, RI (2002)

  27. Markushevich, D.: Rational Lagrangian fibrations on punctual Hilbert schemes of K3 surfaces. Manuscr. Math. 120(2), 131–150 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mukai, S.: Symplectic structure of the moduli space of sheaves on an abelian or K3 surface. Invent. Math. 77(1), 101–116 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Meachan, C., Zhang, Z.: Birational geometry of singular moduli spaces of O’Grady type. Adv. Math. 296, 210–267 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qin, X., Sawon, J.: Birational geometry of Beauville–Mukai systems II: general theory in low ranks (2022). arXiv:2207.12608

  31. Sawon, J.: Abelian fibred holomorphic symplectic manifolds. Turk. J. Math. 27(1), 197–230 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Sawon, J.: Lagrangian fibrations on Hilbert schemes of points on K3 surfaces. J. Algebr. Geom. 16(3), 477–497 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sawon, J.: Twisted Fourier-Mukai transforms for holomorphic symplectic four-folds. Adv. Math. 218(3), 828–864 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sawon, J.: On Lagrangian fibrations by Jacobians I. J. Reine Angew. Math. 701, 127–151 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sawon, J.: On Lagrangian fibrations by Jacobians II. Commun. Contemp. Math. 17(5), 1450046 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Verbitsky, M.: HyperKähler SYZ conjecture and semipositive line bundles. Geom. Funct. Anal. 19(5), 1481–1493 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nicolas Addington for verifying our wall calculations using Macaulay2, Emanuele Macrì for helpful discussions, and an anonymous referee for many helpful corrections and suggestions. The second author gratefully acknowledges support from the Max Planck Institute for Mathematics in Bonn and from the NSF, Grants DMS-1555206 and DMS-2152130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Sawon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we collect some results about wall-crossings for the moduli spaces which have appeared in previous sections.

1.1 Walls for \(S^{[2]}\)

We have \({\textbf{v}}=(1,0,-1)\).

Lemma 5.1

[2, Proposition 13.1] Let \({\tilde{H}}=\theta (0,-1,0)\) and \(B=\theta (-1,0,-1)\). Then

$$\begin{aligned} \textrm{Mov}(S^{[2]})=\langle {\tilde{H}},{\tilde{H}}-B\rangle . \end{aligned}$$

The full list of walls is given in Table 3.

Table 3 Walls of \(\textrm{Mov}(S^{[2]})\)

The only other nontrivial birational model for \(S^{[2]}\) is \(M(0,1,-1)\), obtained by performing a flop of \(S^{[2]}\) along the locus parametrizing \(\xi _2\in S^{[2]}\) through which there passes a pencil of lines. From the \(M(0,1,-1)\) side, the flopping wall is given by \(\left( x+\frac{1}{2}\right) ^2+y^2=\left( \frac{\sqrt{5}}{2}\right) ^2\).

1.2 Walls for \(S^{[3]}\)

We have \({\textbf{v}}=(1,0,-2)\)

Lemma 5.2

[2, Proposition 13.1] Let \({\tilde{H}}=\theta (0,-1,0)\) and \(B=\theta (-1,0,-2)\). Then

$$\begin{aligned} \textrm{Mov}(S^{[3]})=\left\langle {\tilde{H}},{\tilde{H}}-\frac{1}{2}B\right\rangle . \end{aligned}$$

To understand the wall and chamber structure in \(\textrm{Mov}(S^{[3]})\), we apply [2, Theorem 5.7]. The full list of walls is given in Table 4.

Table 4 Walls of \(\textrm{Mov}(S^{[3]})\)

As a result, \(S^{[3]}\) has no other nontrivial birational models. Moreover, there are no other walls with radii larger than 1.

1.3 Walls for \(S^{[4]}\)

We have \({\textbf{v}}=(1,0,-3)\).

Lemma 5.3

[2, Proposition 13.1] Let \({\tilde{H}}=\theta (0,-1,0)\) and \(B=\theta (-1,0,-3)\). Then

$$\begin{aligned} \textrm{Mov}(S^{[4]})=\left\langle {\tilde{H}},{\tilde{H}}-\frac{1}{2}B\right\rangle . \end{aligned}$$

The full list of walls is given in Table 5.

Table 5 Walls of \(\textrm{Mov}(S^{[4]})\)

As a result, there are two birational models of \(S^{[4]}\). If we use \({}^{\sharp }S^{[4]}\) to denote the model not isomorphic to \(S^{[4]}\), then \({}^{\sharp }S^{[4]}\) is obtained by performing a flop of \(S^{[4]}\) along the locus \(\{\xi _4\;|\;h^0({\mathcal {I}}_{\xi _4}(1))\ne 0\}\).

1.4 Walls for \(S^{[8]}\)

We let \({\textbf{v}}=(1,0,-7)\).

Lemma 5.4

[2, Proposition 13.1] Let \({\tilde{H}}=\theta (0,-1,0)\) and \(B=\theta (-1,0,-7)\). Then

$$\begin{aligned} \textrm{Mov}(S^{[8]})=\left\langle {\tilde{H}},{\tilde{H}}-\frac{3}{8}B\right\rangle . \end{aligned}$$

The full list of walls is given in Table 6.

Table 6 Walls of \(\textrm{Mov}(S^{[8]})\)

As a result, there are eight birational models of \(S^{[8]}\).

1.5 Walls for \({\textbf{v}}=(0,1,0)\)

By [2, Theorem 5.7], there is no wall for (0, 1, 0) whose radius is larger than 1.

1.6 Walls for \({\textbf{v}}=(0,2,-2)\)

By [29, Theorem 5.3], the only wall for \((0,2,-2)\) whose radius is larger than 1 is a flopping wall given by

$$\begin{aligned} \left( x+\frac{1}{2}\right) ^2+y^2=\left( \frac{\sqrt{5}}{2}\right) ^2. \end{aligned}$$

1.7 Walls for \({\textbf{v}}=(0,2,-1)\)

These are computed in [18, Section 5]. There are two walls with radii larger than 1, given by

$$\begin{aligned} \left( x+\frac{1}{4}\right) ^2+y^2&=\left( \frac{5}{4}\right) ^2,\\ \left( x+\frac{1}{4}\right) ^2+y^2&=\left( \frac{\sqrt{17}}{4}\right) ^2. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Sawon, J. Birational geometry of Beauville–Mukai systems I: the rank three and genus two case. Math. Z. 305, 32 (2023). https://doi.org/10.1007/s00209-023-03353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03353-z

Keywords

Mathematics Subject Classification

Navigation