Skip to main content
Log in

Exponential sums over primes with multiplicative coefficients

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider exponential sums of the form

$$\begin{aligned} \sum _{X< p \le 2X}f(p)(\log p) e(p\alpha ), \end{aligned}$$

where the sum runs over the prime numbers \(p\in (X, 2X]\) and f is a multiplicative function satisfying certain growth conditions. As a consequence of our result, we consider the coefficients \((a_\pi (n))\) of the standard L-function \(L(s,\pi )\) of a cuspidal representation \(\pi \) of GL(d) that satisfies the Ramanujan–Petersson conjecture as well as an estimate of the form \(\max _{\alpha \in \mathbb {R}}|\sum _{\begin{array}{c} n\le X \end{array}} a_\pi (n) e(n\alpha )|\le X^\eta \) for some \(\eta <1\). For such a form, we get that

$$\begin{aligned} \sum _{X<p\le 2X} a_\pi (p)(\log p) e(p\alpha )\ll \frac{\sqrt{q}}{\varphi (q)}X, \end{aligned}$$

where \(\alpha \) is a real number such that \(\left| \alpha -\frac{a}{q}\right| \ll X^{-1+\frac{1-\eta }{120}}\) for some \(q\le X^{(1-\eta )/15}\). Under stronger restrictions and the same conditions on \(\alpha \) and a/q, we also prove that

$$\begin{aligned} \sum _{X<\ell \le 2X} a_\pi (\ell )\mu (\ell ) e(p\alpha )\ll X/\sqrt{q}. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable (no data!).

References

  1. Barban, M.B., Vehov, P.P.: An extremal problem. Trudy Moskov. Mat. 18, 83–90 (1968)

    MathSciNet  Google Scholar 

  2. Benatar, J., Nishry, A., Rodgers, B.: Moments of polynomials with random multiplicative coefficients. Mathematika 68(1), 191–216 (2022)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J., Sarnak, P., Ziegler, T.: Disjointness of Moebius from horocycle flows. In: From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., vol. 28, pp. 67–83. Springer, New York (2013)

  4. Bump, D., Cogdell, J.W., de Shalit, E., Gaitsgory, D., Kowalski, E., Kudla, S.S.: An Introduction to the Langlands Program. Birkhäuser Boston, Inc., Boston (2003). In: Bernstein, J., Gelbart, S. (eds.) Lectures presented at the Hebrew University of Jerusalem, Jerusalem, March 12–16 (2001)

  5. Cafferata, M., Perelli, A., Zaccagnini, A.: An extension of the Bourgain–Sarnak–Ziegler Theorem with modular applications. Q. J. Math. Oxf. 71, 359–377 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Davenport, H.: On some infinite series involving arithmetical functions. II. Q. J. Math. Oxf. Ser. 8, 313–320 (1937)

    Article  MATH  Google Scholar 

  7. Fomenko, O.M.: Mean value theorems for automorphic \(L\)-functions. Algebra i Analiz 19(5), 246–264 (2007)

    MathSciNet  Google Scholar 

  8. Fouvry, É., Ganguly, S.: Strong orthogonality between the Möbius function, additive characters and Fourier coefficients of cusp forms. Compos. Math. 150(5), 763–797 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang, Y., Lü, G.: The generalized Bourgain–Sarnak–Ziegler criterion and its application to additively twisted sums on GL\({}_m\). Sci. China Math. 64, 2207–2230 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, Y., Lü, G., Wang, Z.: Exponential sums with multiplicative coefficients without the Ramanujan conjecture. Math. Ann. 379(1–2), 589–632 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, Y., Lü, G., Wang, Z.: Möbius randomness law for \({\rm GL}(m)\) automorphic \(L\)-functions twisted by additive characters. Proc. Am. Math. Soc. 151(2), 475–488 (2023)

    Article  MATH  Google Scholar 

  12. Jutila, M.: On exponential sums involving the Ramanujan function. Proc. Indian Acad. Sci. Math. Sci. 97(1–3), 157–166 (1988)

    MathSciNet  MATH  Google Scholar 

  13. Lao, H.: Mean square estimates for coefficients of symmetric power \(L\)-functions. Acta Appl. Math. 110(3), 1127–1136 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Levin, B.V., Fainleib, A.S.: Application of some integral equations to problems of number theory. Russ. Math. Surv. 22, 119–204 (1967)

    Article  MATH  Google Scholar 

  15. Lü, G.: Exponential sums with Fourier coefficients of automorphic forms. Math. Z. 289(1–2), 267–278 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miller, S.D.: Cancellation in additively twisted sums on \({\rm GL}(n)\). Am. J. Math. 128(3), 699–729 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Montgomery, H.L., Vaughan, R.C.: Exponential sums with multiplicative coefficients. Invent. Math. 43(1), 69–82 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Motohashi, Y.: Primes in arithmetic progressions. Invent. Math. 44(2), 163–178 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Motohashi, Y.: Sieve Methods and Prime Number Theory. Tata Lectures Notes (1983)

  20. Ramaré, O.: On Snirel’man’s constant. Ann. Scu. Norm. Pisa 21, 645–706 (1995)

    MathSciNet  MATH  Google Scholar 

  21. Ramaré, O., Viswanadham, G.K.: Modular ternary additive problems with irregular or prime numbers. Tr. Mat. Inst. Steklova, vol. 314 (Analiticheskaya i Kombinatornaya Teoriya Chisel), pp. 211–247 (2021) [English version published in Proc. Steklov Inst. Math. 314(1), 203–237 (2021)]

  22. Rankin, R.A.: Contributions to the theory of Ramanujan’s function \(\tau (n)\) and similar arithmetical functions. I. The zeros of the function \(\sum ^\infty _{n=1}\tau (n)/n^s\) on the line \({\Re R}s=13/2\). II. The order of the Fourier coefficients of integral modular forms. Proc. Camb. Philos. Soc. 35, 351–372 (1939)

  23. Riesel, H., Vaughan, R.C.: On sums of primes. Ark. Mat. 21, 46–74 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sarnak, P.: Three lectures on the Mobius function randomness and dynamics. Technical report, Institute for Advanced Study (2011)

  25. Selberg, A.: Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid. 43, 47–50 (1940)

    MathSciNet  MATH  Google Scholar 

  26. Selberg, A.: Old and new conjectures and results about a class of Dirichlet series. In: Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), pp. 367–385. Univ. Salerno, Salerno (1992)

  27. van Lint, J.E., Richert, H.E.: On primes in arithmetic progressions. Acta Arith. 11, 209–216 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wilton, J.R.: A note on Ramanujan’s arithmetical function \(\tau (n)\). Proc. Camb. Philos. Soc. 25, 121–129 (1929)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This paper started in 2018 when the second author was supported by the Indo-French Institute of Mathematics, which we thank warmly for its support, on this occasion as well as for numerous other meetings where, among other things, this work has been pursued.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Ramaré.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramaré, O., Viswanadham, G.K. Exponential sums over primes with multiplicative coefficients. Math. Z. 304, 50 (2023). https://doi.org/10.1007/s00209-023-03305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03305-7

Keywords

Mathematics Subject Classification

Navigation