Skip to main content
Log in

Exponential sums with Fourier coefficients of automorphic forms

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(\pi _1,\pi _2, \ldots , \pi _k\) be cuspidal automorphic representations of \(\mathrm{GL}(2)\) or \(\mathrm{GL}(3)\) with trivial conductor and trivial central character, and \(\pi :=\pi _1\boxplus \pi _2\boxplus \cdots \boxplus \pi _k\) be the isobaric representation associated to them. We establish that there exists a positive constant \(\vartheta _k <1\) such that for any \(\alpha \in {\mathbb {R}}\), any \(x \ge 1\) and any positive \(\varepsilon \), one has

$$\begin{aligned} \sum _{n \le x} \lambda _{\pi _1\boxplus \pi _2\boxplus \cdots \boxplus \pi _k}(n)\mathrm{e}(\alpha n) \ll _{\pi _j,\varepsilon } x^{\vartheta _k+\varepsilon }, \end{aligned}$$

where the implied constant does not depend on \(\alpha \). We also consider some isobaric representations containing the trivial representation. As an application, we consider averages of shifted convolution sums of the type

$$\begin{aligned} \sum _{h=1}^{H}\sum _{n=1}^{X}a(n)\lambda _{\pi _1\boxplus \pi _2\boxplus \cdots \boxplus \pi _k}(n+h), \end{aligned}$$

where a(n) is any arithmetic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cassels, J.W.S., Fröhlich, A.: Algebraic Number Theory. Thompson Book Company Inc., Washington (1967)

  2. Chandrasekharan, K., Narasimhan, R.: Zeta-functions of ideal classes in quadratic fields and their zeros on the critical line. Commentarii Mathematici Helvetici 43, 18–30 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deligne, P., Serre, J.P.: Formes modulaires de poids 1. Ann. Sci. École Norm. Sup. 7, 507–530 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gelbart, S., Jacquet, H.: A relation between automorphic representations of \(\text{ GL }(2)\) and \(\text{ GL }(3)\). Ann. Sci. École Norm. Sup. 11, 471–552 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldfeld, D.: Automorphic Forms and \(L\)-Functions for the Group \({\rm GL}(n,{\mathbb{R}})\), Cambridge Studies in Advanced Mathematics 99. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  6. Hoffstein, J., Ramakrishnan, D.: Siegel zeros and cusp forms. IMRN 6, 279–308 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Iwaniec, H.: Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17. American Mathematical Society, Providence, Rhode Island (1997)

    MATH  Google Scholar 

  8. Iwaniec, H.: Spectral methods of automorphic forms, 2nd edn. Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, R Rhode Island (2002)

  9. Iwaniec, H., Kowalski, E.: Analytic Number Theory, American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence, RI (2004)

  10. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, Hoboken (1974)

    MATH  Google Scholar 

  11. Miller, S.D.: Cancellation in additively twisted sums on GL(n). Amer. J. Math. 128, 699–729 (2006)

  12. Montgomery, H., Vaughan, R.C.: Exponential sums with multiplicative coefficients. Invent. Math. 43, 69–82 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pitt, N.J.E.: On cusp form coefficients in exponential sums. Q. J. Math., 52, 485–497 (2001)

  14. Soundararajan, K.: Weak subconvexity for central values of \(L\)-functions. Ann. Math. 172, 1469–1498 (2010)

  15. Tenenbaum, G.: Introduction to Analytic and Probabilisitic Number Theory. Cambridge University Press, Cambridge (1995)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to the reviewer for detailed suggestions and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangshi Lü.

Additional information

This work is supported in part by NSFC (Nos. 11771252, 11531008), IRT16R43, and Taishan Scholars Project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, G. Exponential sums with Fourier coefficients of automorphic forms. Math. Z. 289, 267–278 (2018). https://doi.org/10.1007/s00209-017-1950-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1950-8

Keywords

Mathematics Subject Classification

Navigation