Skip to main content
Log in

On the instantaneous radius of analyticity of \(L^p\) solutions to 3D Navier–Stokes system

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we first investigate the instantaneous radius of space analyticity for the solutions of 3D Navier–Stokes system with initial data in the Besov spaces \(\dot{B}^s_{p,q}({\mathbb R}^3)\) for \(p\in ]1,\infty [,\) \(q\in [1,\infty ]\) and \(s\in \bigl [-1+\frac{3}{p},\frac{3}{p}\bigr [.\) Then for initial data \(u_0\in L^p({\mathbb R}^3)\) with p in ]3, 6[,  we prove that 3D Navier–Stokes system has a unique solution \(u=u_L+v\) with and \(v\in {\widetilde{L}^\infty _T\Big (\dot{B}^{1-\frac{3}{p}}_{p,\frac{p}{2}}\Big )}\cap {\widetilde{L}^1_T\Big (\dot{B}^{3-\frac{3}{p}}_{p,\frac{p}{2}}\Big )}\) for some positive time T. Furthermore, we derive an explicit lower bound for the radius of space analyticity of v,  which in particular extends the corresponding results in Hu and Zhang (Chin Ann Math Ser B 43:749–772, 2022) with initial data in \(L^p({\mathbb R}^3)\) for \(p\in [3, 18/5[.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bae, H., Biswas, A., Tadmor, E.: Analyticity and decay estimates of the Navier–Stokes equations in critical Besov spaces. Arch. Ration. Mech. Anal. 205, 963–991 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Berlin Heidelberg (2011)

    Book  MATH  Google Scholar 

  3. Biswas, A., Jolly, M.S., Martinez, V.R., Titi, E.S.: Dissipation length scale estimates for turbulent flows: a Wiener algebra approach. J. Nonlinear Sci. 24, 441–471 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biswas, A., Swanson, D.: Gevrey regularity of solutions to the 3-D Navier–Stokes equations with weighted \(\ell _p\) initial data. Indiana Univ. Math. J. 56, 1157–1188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bony, J.M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14, 209–246 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bradshaw, Z., Grujić, Z., Kukavica, I.: Local analyticity radii of solutions to the 3D Navier–Stokes equations with locally analytic forcing. J. Differ. Equ. 259, 3955–3975 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chemin, J.-Y.: Le système de Navier–Stokes incompressible soixante dix ans après Jean Leray, Actes des Journées Mathématiques à la Mémoire de Jean Leray, 99–123, Séminaire et Congrès, 9. Société Mathématique de France, Paris (2004)

  8. Chemin, J.-Y., Gallagher, I.: Wellposedness and stability results for the Navier–Stokes equations in \(\mathbb{R} ^{3}\). Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 599–624 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chemin, J.-Y., Gallagher, I., Zhang, P.: On the radius of analyticity of solutions to semi-linear parabolic system. Math. Res. Lett. 27, 1631–1643 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Doering, C.R., Titi, E.S.: Exponential decay rate of the power spectrum for solutions of the Navier–Stokes equations. Phys. Fluids 7, 1384–1390 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Foias, C., Temam, R.: On the stationary statistical solutions of the Navier–Stokes equations and turbulence. In: Publ. Math. d’Orsay. Univ. Paris XI, Orsay (1975)

  12. Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87, 359–369 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62, 186–212 (1986)

    Article  MATH  Google Scholar 

  14. Grafakos, L.: Classical Fourier Analysis, 3rd edn. Springer, New York (2014)

    Book  MATH  Google Scholar 

  15. Grujić, Z., Kukavica, I.: Space analyticity for the Navier–Stokes and related equations with initial data in \(L^p\). J. Funct. Anal. 152, 447–466 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Henshaw, W.D., Kreiss, H.O., Reyna, L.G.: Smallest scale estimates for the Navier–Stokes equations for incompressible fluids. Arch. Ration. Mech. Anal. 112, 21–44 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Herbst, I., Skibsted, E.: Analyticity estimates for the Navier–Stokes equations. Adv. Math. 228, 1990–2033 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu, R., Zhang, P.: On the radius of analyticity of solutions to 3D Navier–Stokes system with initial data in \(L^p\). Chin Ann. Math. Ser. B 43, 749–772 (2022)

    Article  MATH  Google Scholar 

  19. Kato, T.: Strong \(L^p\)-solutions of the Navier–Stokes equation in \({\mathbb{R} }^m\) with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kato, T., Masuda, K.: Nonlinear evolution equations and analyticity I. Ann. l’IHP Sect. C 3, 455–467 (1986)

    MathSciNet  MATH  Google Scholar 

  21. Kukavica, I.: On the dissipative scale for the Navier–Stokes equation. Indiana Univ. Math. J. 48, 1057–1081 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lemarié-Rieusset, P.-G.: Une remarque sur l’analyticité des solutions milds des équations de Navier–Stokes dans \({\mathbb{R} }^3\). C. R. Acad. Sci. Paris 330, 183–186 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lemarié-Rieusset, P.-G.: Recent developments in the Navier–Stokes problem. In: Chapman & Hall/CRC Research Notes in Mathematics, vol. 431. Chapman & Hall/CRC, Boca Raton (2002)

    MATH  Google Scholar 

  24. Lemarié-Rieusset, P.-G.: Nouvelles remarques sur l’analyticité des solutions milds des équations de Navier–Stokes dans \({\mathbb{R} }^{3}\). C. R. Math. Acad. Sci. Paris 338, 443–446 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Masuda, K.: On the analyticity and the unique continuation theorem for solutions of the Navier–Stokes equation. Proc. Jpn. Acad. 43, 827–832 (1967)

    MathSciNet  MATH  Google Scholar 

  26. Weissler, F.B.: The Navier–Stokes initial value problem in \(L^p\). Arch. Ration. Mech. Anal. 74, 219–230 (1980)

    Article  MATH  Google Scholar 

  27. Zhang, P.: Remark on the regularities of Kato’s solutions to Navier–Stokes equations with initial data in \(L^d({\mathbb{R} }^d)\). Chin. Ann. Math. Ser. B 29, 265–272 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for profitable comments for improving the original version of the manuscript and for introducing me the references [3, 4, 6, 21, 25]. Ping Zhang is supported by National Key R &D Program of China under Grant 2021YFA1000800 and K. C. Wong Education Foundation. He is also partially supported by National Natural Science Foundation of China under Grants 12288201, 11731007 and 12031006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Tool box on Littlewood–Paley theory

Appendix A: Tool box on Littlewood–Paley theory

For the convenience of readers, we shall collect some basic facts on Littlewood–Paley theory in this section. Let us first recall Bernstein Lemma from [2]:

Lemma A.1

Let \({{\mathcal {B}}}\) be a ball of \({\mathbb R}^3\), and \({{\mathcal {C}}}\) a ring of \({\mathbb R}^3\); let \(1\le p_2\le p_1\le \infty .\) Then there holds:

$$\begin{aligned} \begin{aligned} \text{ if }\ \ \textrm{Supp}\widehat{a}\subset 2^j{{\mathcal {B}}}&\Rightarrow \Vert \partial _{x}^\alpha a\Vert _{L^{p_1}} \lesssim 2^{j\left( |\alpha |+3\left( \frac{1}{p_2}-\frac{1}{p_1}\right) \right) } \Vert a\Vert _{L^{p_2}};\\ \text{ if }\ \ \textrm{Supp}\widehat{a}\subset 2^j{{\mathcal {C}}}&\Rightarrow \Vert a\Vert _{L^{p_1}} \lesssim 2^{-jN}\sup _{|\alpha |=N} \Vert \partial _{x}^\alpha a\Vert _{L^{p_1}}. \end{aligned} \end{aligned}$$

In order to obtain a better description of the regularizing effect of the transport-diffusion equation, we need to use Chemin-Lerner type space \(\widetilde{L}^{r}_T(\dot{B}^{s}_{p,q})\).

Definition A.1

Let \(r\in [1,\,+\infty ]\) and \(T_0,T\in [0,\,+\infty ]\). If \(r<\infty ,\) we define \(\widetilde{L}^{r}(T_0,T; \dot{B}^{s}_{p,q})\) as the completion of \(C([T_0,T]; \,{{\mathcal {S}}}({\mathbb R}^3))\) by the norm

with the usual change if \(r=\infty .\) In particular, when \(T_0=0,\) we denote for simplicity.

We also recall the action of the heat semigroup on distribution with the Fourier transform of which is supported in an annulus.

Lemma A.2

(Lemma 2.4 of [2]) Let \({\mathcal {C}}\) be an annulus, then there exists constants c and C, such that for any \(p\in [1,\infty ]\) and any couple of \((t,\lambda )\), there holds

$$\begin{aligned} Supp\ \hat{u}\subseteq \lambda {\mathcal {C}}\ \Rightarrow \ \Vert e^{t\Delta }u\Vert _{L^p}\le Ce^{-ct\lambda ^2}\Vert u\Vert _{L^p} \end{aligned}$$
(A.1)

To deal with the estimate of product of two distributions, we constantly use the following para-differential decomposition from [5]: for any functions \(f,g\in {\mathcal {S}}'({\mathbb R}^3)\),

$$\begin{aligned} fg=T_fg+{T}_gf+R(f,g), \end{aligned}$$
(A.2)

where

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P. On the instantaneous radius of analyticity of \(L^p\) solutions to 3D Navier–Stokes system. Math. Z. 304, 38 (2023). https://doi.org/10.1007/s00209-023-03301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03301-x

Keywords

Mathematics Subject Classification

Navigation