Skip to main content
Log in

Symplectic isotopy on non-minimal ruled surfaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove the stability of \(\textrm{Symp}(X,w)\cap \textrm{Diff}_0(X)\) for a one-point blow-up of irrational ruled surfaces and study their topological colimit. Non-trivial generators of \(\pi _0[\textrm{Symp}(X,w)\cap \textrm{Diff}_0(X)]\) that differ from Lagrangian Dehn twists are detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data collection has been used for this publication.

Notes

  1. The components of \([\mu , 1, c_1, \ldots , c_n)] \) are the areas of the homology class \(B, F, E_1, \ldots , E_n\), where \(\mu >0, c_1+c_2<1, 0<c_i<1,\) \( c_1\ge c_2\ge \cdots \ge c_n, 2 \mu > c_1^2+ \ldots c_n^2 \).

  2. McDuff’s original results were written in terms of homotopy fibrations where the larger space of taming almost complex structures was used. Since this space is homotopy equivalent to the space of compatible structures we use (for reasons explained in Sect. 3.4) we will use the compatible structure spaces instead.

  3. The inflation along \(B+xF\) could be achieved using curves \(B+xF-E\) as as in Lemma 4.4.

  4. A convenient way of avoiding the \(\epsilon , \delta \) in each step of the J-tame inflation process is to use the formal inflation as defined in [30].

References

  1. Abreu, M., Granja, G., Kitchloo, N.: Compatible complex structures on symplectic rational ruled surfaces. Duke Math. J. 148, 539–600 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abreu, M.: Topology of symplectomorphism groups of \(S^{2} \times S^{2}\). Invent. Math. 131, 1–23 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abreu, M., Mcduff, D.: Topology of symplectomorphism groups of rational ruled surfaces. J. Am. Math. Soc. 13, 971–1009 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anjos, S., Lalonde, F., Pinsonnault, M.: The homotopy type of the space of symplectic balls in rational ruled 4-manifolds. Geom. Topol. 13(2), 1177–1227 (2009). (issn: 1465-3060)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anjos, S., Pinsonnault, M.: The homotopy Lie algebra of symplectomorphism groups of 3-fold blow-ups of the projective plane. Math. Z. 275(1–2), 245–292 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anjos, S. et al.: Stability of the symplectomorphism group of rational surfaces. arXiv preprint (2019)

  7. Biran, P., Giroux, E.: Symplectic mapping classes and fillings (2007)

  8. Birman, J.S.: Mapping class groups and their relationship to braid groups. Commun. Pure Appl. Math. 22, 213–238 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buse, O.: Negative inflation and stability in symplectomorphism groups of ruled surfaces. J. Symplectic Geom. 9, 147–160 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buse, O., Li, J.: Chambers in the symplectic cone and stability of Symp for ruled surface. Preprint (2022)

  11. Fuller, T.: Lefschetz fibrations of 4-dimensional manifolds. Cubo Mat. Educ. 3, 275–294 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Gompf, R.E., Stipsicz, A.I.: \(4\)-manifolds and Kirby calculus. pp. xvi+558 (1999)

  13. Hatcher, A.: Algebraic Topology, p. xii+544. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  14. Ivashkovich, S., Shevchishin, V.: Structure of the moduli space in a neighborhood of a cusp-curve and meromorphic hulls. Invent. Math. 136(3), 571–602 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kronheimer, P.: Some non-trivial families of symplectic structures. Preprint (1999)

  16. Lalonde, F., Pinsonnault, M.: The topology of the space of symplectic balls in rational 4-manifolds. Duke Math. J. 122(2), 347–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, T.J., Liu, A.: Symplectic structure on ruled surfaces and a generalized adjunction formula. Math. Res. Lett. 2(4), 453–471 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, T.-J., Liu, A.-K.: Uniqueness of symplectic canonical class, surface cone and symplectic cone of 4-manifolds with \(B^{+} = 1\). J. Differ. Geom. 58(2), 331–370 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, T.-J., Usher, M.: Symplectic forms and surfaces of negative square. J. Symplectic Geom. 4(1), 71–91 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, J., Li, T.-J.: Symplectic (\(-2\))-spheres and the symplectomorphism group of small rational 4-manifolds. Pac. J. Math. 304(2), 561–606 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, T.-J., Zhang, W.: Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds. Commun. Anal. Geom. 17(4), 651–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, T.-J., Zhang, W.: Additivity and relative Kodaira dimensions. In: Geometry and Analysis. No. 2, vol. 18. Adv. Lect. Math. (ALM). Int. Press, Somerville, pp. 103–135 (2011)

  23. Li, J., Li, T.-J., Weiwei, W.: The symplectic mapping class group of \(\mathbb{C} {P}^{2}\#n\overline{\mathbb{C} {P}^{2}}\) with \(n \le 4\). Mich. Math. J. 64(2), 319–333 (2015)

    Article  Google Scholar 

  24. Li, J., Li, T.-J., Wu, W.: Symplectic Torelli groups of rational surfaces. Preprint (2022)

  25. McDuff, D.: Singularities and positivity of intersections of \(J\)-holomorphic curves. Holomorphic Curves Symplectic Geom. 117, 191–215 (1994). (Progr. Math. With an appendix by Gang Liu. Birkhäuser, Basel)

    Article  MathSciNet  Google Scholar 

  26. McDuff, D.: Symplectomorphism groups and almost complex structures. Enseignement Math., 1–30 (2001)

  27. McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Mathematical Monographs, 3rd edn. OUP, Oxford (2017)

    Book  MATH  Google Scholar 

  28. Shevchishin, V., Smirnov, G.: Elliptic diffeomorphisms of symplectic 4-manifolds. J. Symplectic Geom. 18(5), 1247–1283 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, W.: Moduli space of \(J\)-holomorphic subvarieties. Selecta Math. (N.S.) 27(2), 29–44 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, W.: The curve cone of almost complex 4-manifolds. Proc. Lond. Math. Soc. (3) 115(6), 1227–1275 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Jun Li is supported by an AMS-Simons travel grant. We are grateful to Richard Hind, Tian-Jun Li, Dusa McDuff, Weiwei Wu, Weiyi Zhang for helpful conversations. We thank an anonymous referee for his/her very careful reading and many helpful suggestions throughout the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olguta Buse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buse, O., Li, J. Symplectic isotopy on non-minimal ruled surfaces. Math. Z. 304, 44 (2023). https://doi.org/10.1007/s00209-023-03298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03298-3

Navigation