Skip to main content
Log in

Rational curves on primitive symplectic varieties of OG\(_6^s\)-type

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove that any ample class on a primitive symplectic variety that is a locally trivial deformation of O’Grady’s singular 6-dimensional example is proportional to the first Chern class of a uniruled divisor. This result answers a question of Lehn-Mongardi-Pacienza (Lehn et al. 2021, Remark 4.7) extending their result (Lehn et al. 2021, Theorem 1.3) for primitive symplectic varieties of this deformation type. In order to get our result we produce examples of positive uniruled divisors on singular moduli spaces of sheaves that are locally trivial deformations of O’Grady’s example. We show that all possible square and divisibility of polarizations arise on such moduli spaces, hence we conclude by maximality of the monodromy group of this deformation class of singular symplectic varieties. Finally we provide some considerations on the smooth case, motivating why our techniques fail on the smooth setting and pointing out what information is needed to conclude the existence of positive uniruled divisors on smooth O’Grady’s sixfolds starting from our result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This is the reference for the same result in the smooth setting, i.e. the case of ihs manifods.

  2. For a complex compact variety X the integration over its singular top cohomology group \(\textrm{H}^{2n}(X,\mathbb Z)\) is defined as \(\int _X\alpha :=[X]\cap \alpha \), where \([X]\in \textrm{H}_{2n}(X,\mathbb Z)\) is the fundamental class. Integration commutes with pullbacks by bimeromorphic morphisms.

  3. This is the reference for the same result in the smooth setting, i.e. the case of ihs manifods.

  4. Note that the terminology used in [29] is different from the one we have chosen, as he refers to primitive symplectic varieties as irreducible symplectic varieties, cfr. Definition 1.(3) therein.

  5. A divisor is positive if so is its first Chern class.

  6. [26, Theorem 1.7] computes the Fujiki constant for any singular moduli space on a surface with trivial canonical bundle, but in this particular case, i.e. when the singular moduli space admits a symplectic resolution given by an ihs manifold, the computation is easier as the Fujiki constant equals the one of its resolution.

  7. This is the reference in the smooth setting, i.e. for ihs manifolds.

  8. For the definition of transvection, or Eichler transvection, we refer to [9, Lemma 3.1]

References

  1. Bakker, B., Lehn, C.: The global moduli theory of symplectic varieties. arXiv preprint arXiv:1812.09748 (2018)

  2. Bakker, B., Guenancia, H., Lehn, C.: Algebraic approximation and the decomposition theorem for Köhler calabi–yau varieties. Invent. Math. 228(3), 1255–1308 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18(4), 755–782 (1983)

    Article  MATH  Google Scholar 

  4. Beauville, A.: Symplectic singularities. Invent. Math. 139(3), 541–549 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertini, V.: Rational curves on O’Grady’s tenfolds. arXiv preprint arXiv:2101.01029 (2021)

  6. Charles, F., Mongardi, G., Pacienza, G.: Families of rational curves on holomorphic symplectic varieties and applications to zero-cycles. Compos. Math. arXiv preprint arXiv:1907.10970 (2019) (To appear)

  7. Fujiki, A.: On the de Rham cohomology group of a compact Kähler symplectic manifold. In: Algebraic Geometry, 1985, Editor: T. Oda, pp. 105–165. Mathematical Society of Japan, Sendai (1987)

  8. Greb, D., Kebekus, S., Peternell, T.: Singular spaces with trivial canonical class. In: Minimal models and extremal rays (Kyoto, 2011), Editors: J. Kollár, O. Fujino, S. Mukai, N. Nakayama, pp. 67–113 Mathematical Society of Japan (2016)

  9. Gritsenko, V., Hulek, K., Sankaran, G.: Abelianisation of orthogonal groups and the fundamental group of modular varieties. J. Algebra 322(2), 463–478 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Höring, A., Peternell, T.: Algebraic integrability of foliations with numerically trivial canonical bundle. Invent. Math. 216(2), 395–419 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huybrechts, D.: Compact hyperkähler manifolds: basic results. Invent. Math. 135(1), 63–113 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kirschner, T.: Period Mappings with Applications to Symplectic Complex Spaces, vol. 2140. Springer, Berlin (2015)

    MATH  Google Scholar 

  13. Lehn, M., Sorger, C.: La singularité de O’Grady. J. Algebraic Geom. 15, 10 (2006)

    Article  MATH  Google Scholar 

  14. Lehn, C., Mongardi, G., Pacienza, G.: Deformations of rational curves on primitive symplectic varieties and applications. Algebraic Geom. arXiv preprint arXiv:2103.16356 (2021) (To appear)

  15. Matsushita, D.: On base manifolds of Lagrangian fibrations. Sci. China Math. 58(3), 531–542 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mongardi, G., Pacienza, G.: Polarized parallel transport and uniruled divisors on deformations of generalized Kummer varieties. Int. Math. Res. Not. 2018(11), 3606–3620 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mongardi, G., Pacienza, G.: Corrigendum and Addendum to “Polarized parallel transport and uniruled divisors on generalized Kummer varieties. Int. Math. Res. Not. 18, 14398–14404 (2019)

    MATH  Google Scholar 

  18. Mongardi, G., Rapagnetta, A.: Monodromy and birational geometry of O’Grady’s sixfolds. arXiv preprint arXiv:1909.07173 (2019)

  19. Mongardi, G., Rapagnetta, A., Saccà, G.: The hodge diamond of o’grady’s six-dimensional example. Compos. Math. 154(5), 984–1013 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nakano, S.: On the inverse of monoidal transformation. Publ. Res. Inst. Math. Sci. 6, 483–502 (1970/71)

  21. Namikawa, Y.: Extension of 2-forms and symplectic varieties. J. Reine Angew. Math. 539, 123–147 (2001)

    MathSciNet  MATH  Google Scholar 

  22. O’Grady, K.: Desingularized moduli spaces of sheaves on a K3. J. Reine Angew. Math. 512(512), 49–117 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. O’Grady, K.: A new six dimensional irreducible symplectic variety. J. Algebraic Geom. 12(3), 435–505 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Perego, A., Rapagnetta, A.: Deformation of the O’Grady moduli spaces. J. Für die Reine Angew. Math. (Crelles Journal) 2013(678), 1–34 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Perego, A., Rapagnetta, A.: The moduli spaces of sheaves on k3 surfaces are irreducible symplectic varieties. arXiv preprint arXiv:1802.01182 (2018)

  26. Perego, A., Rapagnetta, A.: The second integral cohomology of moduli spaces of sheaves on k3 and abelian surfaces (2020)

  27. Rapagnetta, A.: Topological invariants of O’Grady’s six dimensional irreducible symplectic variety. Math. Z. 256(1), 1–34 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schwald, M.: On the definition of irreducible holomorphic symplectic manifolds and their singular analogs. arXiv preprint arXiv:2003.06004 (2020)

  29. Schwald, M.: Fujiki relations and fibrations of irreducible symplectic varieties. Épijournal Géom. Algébrique 4, 7 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Voisin, C.: Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties. In: K3 surfaces and their moduli, Editors: C. Faber, G. Farkas, G. van der Geer, pp. 365–399. Springer(2016)

Download references

Acknowledgements

We wish to thank Christian Lehn, Giovanni Mongardi, Claudio Onorati and Gianluca Pacienza for their hints and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Bertini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors have been partially supported by the DFG through the research grant Le 3093/2-2. Valeria Bertini has been partially funded by Portuguese national funds through FCT (Fundação para a Ciência e a Tecnologia) through the project EXPL/MAT-PUR/1162/2021 and through CMUP (Centro de Matemática da Universidade do Porto) under the project UIDB/00144/2020, and by the PRIN Project 2020 “Curves, Ricci flat varieties and their interactions”. Annalisa Grossi is supported by ERC Synergy Grant ERC-2020-SyG-854361-HyperK.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertini, V., Grossi, A. Rational curves on primitive symplectic varieties of OG\(_6^s\)-type. Math. Z. 304, 36 (2023). https://doi.org/10.1007/s00209-023-03296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03296-5

Keywords

Mathematics Subject Classification

Navigation