Skip to main content
Log in

Holomorphic projective connections on compact complex threefolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove that a holomorphic projective connection on a complex projective threefold is either flat, or it is a translation invariant holomorphic projective connection on an abelian threefold. In the second case, a generic translation invariant holomorphic affine connection on the abelian variety is not projectively flat. We also prove that a simply connected compact complex threefold with trivial canonical line bundle does not admit any holomorphic projective connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amores, A.M.: Vector fields of a finite type \(G\)-structure. J. Differ. Geom. 14, 1–6 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Atiyah, M.F.: Complex analytic connections in fibre bundles. Trans. Am. Math. Soc. 85, 181–207 (1957)

    MathSciNet  MATH  Google Scholar 

  3. Beauville, A.: Variétés köhleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18, 755–782 (1983)

    MATH  Google Scholar 

  4. Biswas, I., Dumitrescu, S.: Fujiki class \(\cal{C}\) and holomorphic geometric structures. Int. J. Math. 31 (2020)

  5. Biswas, I., Dumitrescu, S.: Holomorphic Cartan geometries on complex tori. C. R. Acad. Sci. 356, 316–321 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Biswas, I., Dumitrescu, S.: Branched holomorphic Cartan geometries and Calabi–Yau manifolds. Int. Math. Res. Not. 23, 7428–7458 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Biswas, I., Dumitrescu, S.: Holomorphic Riemannian metric and fundamental group. Bull. Soc. Math. Fr. 147, 455–468 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Biswas, I., McKay, B.: Holomorphic Cartan geometries and Calabi–Yau manifolds. J. Geom. Phys. 60, 661–663 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Biswas, I., McKay, B.: Holomorphic Cartan geometries, Calabi–Yau manifolds and rational curves. Differ. Geom. Appl. 28, 102–106 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Biswas, I., McKay, B.: Holomorphic Cartan geometries and rational curves. Complex Manifolds 3, 145–168 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Bogomolov, F.A.: Kähler manifolds with trivial canonical class. Izv. Akad. Nauk. SSSR 38, 11–21 (1974). (English translation in Math. USSR Izv. 8, 9–20 (1974))

    MathSciNet  Google Scholar 

  12. Brunella, M.: On holomorphic forms on compact complex threefolds. Comment. Math. Helv. 74, 642–656 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Čap, A., Melnick, K.: Essential killing fields of parabolic geometries: projective and conformal structures. Cent. Eur. J. Math. 11, 2053–2061 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Cascini, P.: Rational curves on complex manifolds. Milan J. Math. 81, 291–315 (2013)

    MathSciNet  MATH  Google Scholar 

  15. D’Ambra, G.: Isometry groups of Lorentz manifolds. Invent. Math. 92, 555–565 (1988)

    MathSciNet  MATH  Google Scholar 

  16. D’Ambra, G., Gromov, M.: Lectures on Transformations Groups: Geometry and Dynamics. Surveys in Differential Geometry, Cambridge (1991)

    MATH  Google Scholar 

  17. de Saint Gervais, H.P.: Uniformization of Riemann Surfaces. E.M.S, Revisiting a hundred year old theorem (2016)

  18. Dumitrescu, S.: Structures géométriques holomorphes sur les variétés complexes compactes. Ann. Sci. École Norm. Sup. 34, 557–571 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Dumitrescu, S.: Connexions affines et projectives sur les surfaces complexes compactes. Math. Zeit. 264, 301–316 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Dumitrescu, S.: Killing fields of holomorphic Cartan geometries. Monatsh. Math. 161, 145–154 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Eisenhart, L.P.: Non-Riemannian Geometry, vol. 8. American Mathematical Society Colloquium Publications, New York (1927)

    MATH  Google Scholar 

  22. Fujiki, A.: On the structure of compact manifolds in \({\cal{C} }\). Adv. Stud. Pure Math. 1, 231–302 (1983). (Algebraic Varieties and Analytic Varieties)

    MathSciNet  Google Scholar 

  23. Gasqui, J.: Équivalence projective et équivalence conforme. Ann. ENS 12, 101–134 (1979)

    MathSciNet  MATH  Google Scholar 

  24. Ghys, E.: Déformations des structures complexes sur les espaces homogènes de \(SL(2, {\mathbb{C} })\). J. Reine Angew. Math. 468, 113–138 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Gromov, M.: Rigid transfomations groups. In: Bernard, D., Choquet Bruhat, Y. (eds.) Géométrie Différentielle, vol. 33, pp. 65–139. Hermann (1988)

  26. Gunning, R.C.: On Uniformization on Complex Manifolds: The Role of Connections. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  27. Hwang, J.-M., Mok, N.: Uniruled projective manifolds with irreducible reductive \(G\)-structures. J. Reine Angew. Math. 490, 55–64 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Inoue, M., Kobayashi, S., Ochiai, T.: Holomorphic affine connections on compact complex surfaces. J. Fac. Sci. Univ. Tokyo 27, 247–264 (1980)

    MathSciNet  MATH  Google Scholar 

  29. Jahnke, P., Radloff, I.: Projective threefolds with holomorphic normal projective connections. Math. Ann. 329, 379–400 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Jahnke, P., Radloff, I.: Projective uniformization, extremal Chern classes and quaternionic Shimura curves. Math. Ann. 363, 753–776 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Kato, M.: On characteristic forms on complex manifolds. J. Algebra 138, 424–439 (1991)

    MathSciNet  MATH  Google Scholar 

  32. Klingler, B.: Structures affines et projectives sur les surfaces complexes. Ann. Inst. Fourier 48, 441–477 (1998)

    MathSciNet  MATH  Google Scholar 

  33. Klingler, B.: Un théorème de rigidité non métrique pour les variétés localement symétriques hermitiennes. Comment. Math. Helv. 76, 200–217 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Kobayashi, S., Ochiai, T.: Holomorphic projective structures on compact complex surfaces. Math. Ann. 249, 75–94 (1980)

    MathSciNet  MATH  Google Scholar 

  35. Kobayashi, S., Ochiai, T.: Holomorphic projective structures on compact complex surfaces II. Math. Ann. 255, 519–521 (1981)

    MathSciNet  MATH  Google Scholar 

  36. Kobayashi, S., Ochiai, T.: Holomorphic structures modeled after hyperquadrics. Tohoku Math. J. 34, 587–629 (1982)

    MathSciNet  MATH  Google Scholar 

  37. Kohel, D.R., Verrill, H.A.: Fondamental domains for Shimura curves. J. Theor. Nr. Bordx. 15, 205–222 (2003)

    MATH  Google Scholar 

  38. Lange, H., Birkenhake, C.: Complex Abelian Varieties, Grundlehren der Mathematischen Wissenschaften, vol. 302. Springer, Berlin (1992)

    MATH  Google Scholar 

  39. Lübke, M., Teleman, A.: The Kobayashi–Hitchin Correspondence. World Scientific Publishing Co. Inc., River Edge (1995)

    MATH  Google Scholar 

  40. Matveev, V.S.: Proof of the projective Lichnerowicz–Obata conjecture. J. Differ. Geom. 75, 459–502 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Melnick, K.: A Frobenius theorem for Cartan geometries, with applications. Enseign. Math. 57, 57–89 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Moishezon, B.: On \(n\) dimensional compact varieties with \(n\) independent meromorphic functions. Am. Math. Soc. Transl. 63, 51–77 (1967)

    MATH  Google Scholar 

  43. Mok, N., Yeung, S.K.: Geometric realizations of uniformization of conjugates of hermitian locally symmetric manifolds. In: Ancona, V., Silva, A. (eds.) Complex Analysis and Geometry, pp. 253–270. Plenum Press, New York (1993)

    Google Scholar 

  44. Molzon, R., Mortensen, K.P.: The Schwarzian derivative of maps between manifolds with complex projective connections. Trans. Am. Math. Soc. 348, 3015–3036 (1996)

    MathSciNet  MATH  Google Scholar 

  45. Nagano, T., Ochiai, T.: On compact Riemannian manifolds admitting essential projective transformations. J. Fac. Sci. Univ. Tokyo 33, 233–246 (1986)

    MathSciNet  MATH  Google Scholar 

  46. Nomizu, K.: On local and global existence of Killing vector fields. Ann. Math. 72, 105–120 (1960)

    MathSciNet  MATH  Google Scholar 

  47. Ovsienko, V., Tabachnikov, S.: Projective Differential Geometry Old and New. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  48. Pecastaing, V.: On two theorems about local automorphisms of geometric structures. Ann. Inst. Fourier 66, 175–208 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Sharpe, R.: Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program, Graduate Texts in Mathematics, vol. 166. Springer, New York (1997)

    Google Scholar 

  50. Shimura, G.: On the theory of automorphic functions. Ann. Math. 70, 101–144 (1959)

    MathSciNet  MATH  Google Scholar 

  51. Ueno, K.: Classification Theory of Algebraic Varieties and Compact Complete Spaces. Notes written in collaboration with P. Cherenack, Lecture Notes in Mathematics, vol. 439. Springer, Berlin (1975)

    MATH  Google Scholar 

  52. Varouchas, J.: Kähler spaces and proper open morphisms. Math. Ann. 283, 13–52 (1989)

    MathSciNet  MATH  Google Scholar 

  53. Wang, H.-C.: Complex parallelisable manifolds. Proc. Am. Math. Soc. 5, 771–776 (1954)

    MATH  Google Scholar 

  54. Weyl, H.: Infintesimalgeometrie. Götingen Nachrichten, Einordnung der projektiven und der konformen Auffassung, pp. 99–112 (1921)

  55. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    MATH  Google Scholar 

  56. Ye, Y.G.: On Fano manifolds with normal projective connections. Int. J. Math. 5, 265–271 (1994)

    MathSciNet  MATH  Google Scholar 

  57. Zeghib, A.: On discrete projective transformation groups of Riemannian manifolds. Adv. Math. 297, 26–53 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank G. Chenevier for a useful discussion about the geometry of Shimura curves.This work has been supported by the French government through the UCAJEDI Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR2152IDEX201. The first-named author is partially supported by a J. C. Bose Fellowship, and school of mathematics, TIFR, is supported by 12-R & D-TFR\(-\)5.01-0500. The second-named author wishes to thank TIFR Mumbai for hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin Dumitrescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The aim of this Appendix is to prove the technical Lemma 13, used in the proof of Proposition 12 (ii), namely:

\(\nabla ^{A,B,C,D,E}\) is projectively flat on \({{\mathbb {T}}}^3\) if and only if \(C\,=\,D\).

Proof

For that we shall compute the projective Weyl curvature tensor of \(\nabla ^{A,B,C,D,E}\).

We start by computing the affine curvature tensor. To simplify the notation in the computation, \(\nabla ^{A,B,C,D,E}\) is denoted simply by \(\nabla \). Recall from (2.5) that the affine curvature tensor of \(\nabla \) is given by the formula

$$\begin{aligned} R(X,Y)Z\,=\,\nabla _X \nabla _Y Z -\nabla _Y \nabla _X Z- \nabla _{[X, Y ]}Z. \end{aligned}$$

Substituting for XY and Z we get the following explicit expressions:

$$\begin{aligned}{} & {} R\bigg (\frac{\partial }{\partial \tau }, \frac{\partial }{\partial z_1}\bigg ) \frac{\partial }{\partial z_1}\,=\, \nabla _{\frac{\partial }{\partial \tau }} \nabla _{\frac{\partial }{\partial z_1}} \frac{\partial }{\partial z_1}- \nabla _{\frac{\partial }{\partial z_1}} \nabla _{\frac{\partial }{\partial \tau }} \frac{\partial }{\partial z_1}\,=\, \nabla _{\frac{\partial }{\partial \tau }} \bigg (f_{z_1,z_1}^{z_1} \frac{\partial }{\partial z_1}\bigg ) \\{} & {} \qquad \qquad \qquad \qquad \qquad \qquad - \nabla _{\frac{\partial }{\partial z_1}} \bigg (f_{\tau ,,z_1}^{\tau } \frac{\partial }{\partial \tau }+ f_{\tau ,,z_1}^{z_1}\frac{\partial }{\partial z_1}\bigg ) \\{} & {} \qquad =\, f_{z_1,z_1}^{z_1}\bigg (f_{\tau ,,z_1}^{\tau } \frac{\partial }{\partial \tau } + f_{\tau ,,z_1}^{z_1} \frac{\partial }{\partial z_1}\bigg ) -f_{\tau , z_1}^{\tau } \nabla _{\frac{\partial }{\partial z_1}} \frac{\partial }{\partial \tau } -f_{\tau , z_1}^{z_1} \nabla _{\frac{\partial }{\partial z_1}} \frac{\partial }{\partial z_1} \\{} & {} \qquad =\, f_{z_1,z_1}^{z_1}\bigg (f_{\tau ,,z_1}^{\tau } \frac{\partial }{\partial \tau } + f_{\tau ,,z_1}^{z_1} \frac{\partial }{\partial z_1}\bigg )-f_{\tau , z_1}^{\tau } \bigg (f_{z_1, \tau }^{\tau } \frac{\partial }{\partial \tau }+f_{z_1, \tau }^{z_1} \frac{\partial }{\partial z_1}\bigg )-f_{\tau , z_1}^{z_1}f_{z_1,z_1}^{z_1} \frac{\partial }{\partial z_1} \\{} & {} \qquad =\,\frac{C^2}{4} \frac{\partial }{\partial \tau } -\frac{CE}{4}\frac{\partial }{\partial z_1}. \end{aligned}$$

By symmetry we get

$$\begin{aligned} R\bigg (\frac{\partial }{\partial \tau }, \frac{\partial }{\partial z_2}\bigg ) \frac{\partial }{\partial z_2}\,=\, \frac{D^2}{4} \frac{\partial }{\partial \tau } -\frac{DE}{4}\frac{\partial }{\partial z_2}, \end{aligned}$$

and

$$\begin{aligned}{} & {} R\bigg (\frac{\partial }{\partial z_1}, \frac{\partial }{\partial z_2}\bigg ) \frac{\partial }{\partial z_1}\,=\, \nabla _{\frac{\partial }{\partial z_1}} \nabla _{\frac{\partial }{\partial z_2}} \frac{\partial }{\partial z_1}- \nabla _{\frac{\partial }{\partial z_2}} \nabla _{\frac{\partial }{\partial z_1 }} \frac{\partial }{\partial z_1} \,=\, \nabla _{\frac{\partial }{\partial z_1}} \bigg (f_{z_1,z_2}^{z_1} \frac{\partial }{\partial z_1} + f_{z_1,z_2}^{z_2} \frac{\partial }{\partial z_2}\bigg ) \\{} & {} \quad - \nabla _{\frac{\partial }{\partial z_2} } \bigg (f_{z_1,z_1}^{z_1} \frac{\partial }{\partial z_1}\bigg )\,=\, f_{z_1,z_2}^{z_1}\cdot f_{z_1,z_1}^{z_1} \frac{\partial }{\partial z_1} +f_{z_1,z_2}^{z_2} \nabla _{\frac{\partial }{\partial z_1}}\frac{\partial }{\partial z_2}-f_{z_1,z_1}^{z_1} \nabla _{\frac{\partial }{\partial z_2}}\frac{\partial }{\partial z_1} \\{} & {} \quad =\, \frac{C^2}{2} \frac{\partial }{\partial z_1} +( \frac{1}{2}D-C) \nabla _{\frac{\partial }{\partial z_1}} \frac{\partial }{\partial z_2}\, =\, \frac{C^2}{2} \frac{\partial }{\partial z_1} +\bigg (\frac{1}{2}D-C\bigg ) \bigg (f_{z_1,z_2}^{z_1} \frac{\partial }{\partial z_1} + f_{z_1,z_2}^{z_2} \frac{\partial }{\partial z_2}\bigg ) \\{} & {} \quad =\, \frac{C^2}{2} \frac{\partial }{\partial z_1} +\bigg (\frac{1}{2}D-C\bigg ) \bigg (\frac{C}{2} \frac{\partial }{\partial z_1} + \frac{D}{2} \frac{\partial }{\partial z_2}\bigg )\,=\, \frac{CD}{4} \frac{\partial }{\partial z_1} + \frac{D^2-2CD}{4} \frac{\partial }{\partial z_2}. \end{aligned}$$

By symmetry we get

$$\begin{aligned} R\bigg (\frac{\partial }{\partial z_1}, \frac{\partial }{\partial z_2}\bigg ) \frac{\partial }{\partial z_2}\,=\, -R\bigg (\frac{\partial }{\partial z_2}, \frac{\partial }{\partial z_1}\bigg ) \frac{\partial }{\partial z_2}\,=\,- \frac{C^2-2CD}{4} \frac{\partial }{\partial z_1} - \frac{CD}{4}\frac{\partial }{\partial z_2}. \end{aligned}$$

We have

$$\begin{aligned}{} & {} R\bigg (\frac{\partial }{\partial \tau }, \frac{\partial }{\partial z_1}\bigg ) \frac{\partial }{\partial z_2}\,=\, \nabla _{\frac{\partial }{\partial \tau }} \nabla _{\frac{\partial }{\partial z_1}} \frac{\partial }{\partial z_2}- \nabla _{\frac{\partial }{\partial z_1}} \nabla _{\frac{\partial }{\partial \tau }} \frac{\partial }{\partial z_2} \\{} & {} \quad =\,\nabla _{\frac{\partial }{\partial \tau }} \bigg (f_{z_1,z_2}^{z_1} \frac{\partial }{\partial z_1} + f_{z_1,z_2}^{z_2} \frac{\partial }{\partial z_2}\bigg ) - \nabla _{\frac{\partial }{\partial z_1}} \bigg (f_{\tau ,z_2}^{\tau } \frac{\partial }{\partial \tau } + f_{\tau ,z_2}^{z_2} \frac{\partial }{\partial z_2}\bigg ) \\{} & {} \quad =\, \frac{1}{2}C \bigg (f_{\tau , z_1}^{\tau } \frac{\partial }{\partial \tau } + f_{\tau , z_1}^{z_1} \frac{\partial }{\partial z_1}\bigg )+ \frac{1}{2} D\bigg ( f_{\tau , z_2}^{\tau } \frac{\partial }{\partial \tau } + f_{\tau , z_2}^{z_2} \frac{\partial }{\partial z_2}\bigg ) - f_{z_2, \tau }^{\tau } \nabla _{\frac{\partial }{\partial z_1}}\frac{\partial }{\partial \tau }- f_{z_2, \tau }^{z_2} \nabla _{\frac{\partial }{\partial z_1}}\frac{\partial }{\partial z_2} \\{} & {} \quad =\, \frac{1}{4} C^2 \frac{\partial }{\partial \tau }+ \frac{1}{4} CE \frac{\partial }{\partial z_1} + \frac{1}{4} D^2 \frac{\partial }{\partial \tau } + \frac{1}{4} DE \frac{\partial }{\partial z_2} - \frac{1}{2} D\bigg (f_{z_1, \tau }^{\tau } \frac{\partial }{\partial \tau } + f_{z_1, \tau }^{z_1} \frac{\partial }{\partial z_1}\bigg ) \\{} & {} \quad - \frac{1}{2} E\bigg (f_{z_1, z_2}^{z_1} \frac{\partial }{\partial z_1} + f_{z_1, z_2}^{z_2} \frac{\partial }{\partial z_2}\bigg ) \,=\, \frac{1}{4} (C^2 + D^2- CD) \frac{\partial }{\partial \tau }- \frac{1}{4}DE \frac{\partial }{\partial z_1}. \end{aligned}$$

By symmetry,

$$\begin{aligned} R\bigg (\frac{\partial }{\partial \tau }, \frac{\partial }{\partial z_2}\bigg ) \frac{\partial }{\partial z_1} \,=\, \frac{1}{4} (C^2 + D^2- CD) \frac{\partial }{\partial \tau } - \frac{1}{4}CE \frac{\partial }{\partial z_2}. \end{aligned}$$

We also compute that

$$\begin{aligned} R\bigg (\frac{\partial }{\partial z_1 }, \frac{\partial }{\partial z_2}\bigg ) \frac{\partial }{\partial \tau } \,= & {} \, \nabla _{\frac{\partial }{\partial z_1}} \nabla _{\frac{\partial }{\partial z_2}} \frac{\partial }{\partial \tau }-\nabla _{\frac{\partial }{\partial z_2}} \nabla _{\frac{\partial }{\partial z_1 }} \frac{\partial }{\partial \tau } \\= & {} \, \nabla _{\frac{\partial }{\partial z_1}} \bigg (f_{\tau , z_2}^{\tau } \frac{\partial }{\partial \tau } + f_{\tau , z_2}^{z_2} \frac{\partial }{\partial z_2}\bigg ) - \nabla _{\frac{\partial }{\partial z_2}} \bigg (f_{\tau , z_1}^{\tau } \frac{\partial }{\partial \tau } + f_{\tau , z_1}^{z_1} \frac{\partial }{\partial z_1}\bigg ) \\= & {} \,f_{\tau , z_2}^{\tau } \bigg (f_{\tau , z_1}^{z_1} \frac{\partial }{\partial z_1} + f_{\tau , z_1}^{\tau } \frac{\partial }{\partial \tau }\bigg )+ f_{\tau , z_2}^{z_2} \bigg (f_{z_1,z_2}^{z_1} \frac{\partial }{\partial z_1} + f_{z_1, z_2}^{z_2} \frac{\partial }{\partial z_2}\bigg ) \\{} & {} -f_{\tau , z_1}^{\tau } \bigg (f_{\tau ,z_2}^{z_2} \frac{\partial }{\partial z_2} + f_{\tau , z_2}^{\tau } \frac{\partial }{\partial \tau }\bigg ) - f_{\tau , z_1}^{z_1} \bigg (f_{z_1,z_2}^{z_1} \frac{\partial }{\partial z_1} + f_{z_1, z_2}^{z_2} \frac{\partial }{\partial z_2}\bigg ) \\= & {} \, \frac{DE}{4} \frac{\partial }{\partial z_1} -\frac{CE}{4}\frac{\partial }{\partial z_2}, \end{aligned}$$

and

$$\begin{aligned}{} & {} R\bigg (\frac{\partial }{\partial \tau }, \frac{\partial }{\partial z_1}\bigg ) \frac{\partial }{\partial \tau } \,=\, \nabla _{\frac{\partial }{\partial \tau }} \nabla _{\frac{\partial }{\partial z_1}} \frac{\partial }{\partial \tau }-\nabla _{\frac{\partial }{\partial z_1}} \nabla _{\frac{\partial }{\partial \tau }} \frac{\partial }{\partial \tau } \\{} & {} \quad =\, \nabla _{\frac{\partial }{\partial \tau }} \bigg (f_{\tau , z_1}^{z_1} \frac{\partial }{\partial z_1} + f_{\tau , z_1}^{\tau } \frac{\partial }{\partial \tau }\bigg )- \nabla _{\frac{\partial }{\partial z_1}} \bigg ( f_{\tau , \tau }^{\tau } \frac{\partial }{\partial \tau }+ f_{\tau , \tau }^{z_1} \frac{\partial }{\partial z_1} + f_{\tau , \tau }^{z_2} \frac{\partial }{\partial z_2}\bigg ) \\{} & {} \quad =\, f_{\tau , z_1}^{z_1} \bigg (f_{\tau , z_1}^{\tau } \frac{\partial }{\partial \tau }+f_{\tau , z_1}^{z_1} \frac{\partial }{\partial z_1}\bigg )+ f_{\tau , z_1}^{\tau } \bigg (f_{\tau , \tau }^{\tau } \frac{\partial }{\partial \tau } + f_{\tau , \tau }^{z_1} \frac{\partial }{\partial z_1} + f_{\tau , \tau }^{z_2} \frac{\partial }{\partial z_2}\bigg ) \\{} & {} \qquad - f_{\tau , \tau }^{\tau } \bigg (f_{\tau , z_1}^{z_1} \frac{\partial }{\partial z_1}+f_{\tau , z_1}^{\tau } \frac{\partial }{\partial \tau }\bigg ) - f_{\tau , \tau }^{z_1} f_{z_1, z_1}^{z_1} \frac{\partial }{\partial z_1}- f_{\tau , \tau }^{z_2} \bigg (f_{z_1, z_2}^{z_1} \frac{\partial }{\partial z_1}+f_{z_1, z_2}^{z_2} \frac{\partial }{\partial z_2}\bigg ) \\{} & {} \quad =\, \frac{EC}{4} \frac{\partial }{\partial \tau }+ \bigg (-\frac{E^2}{4}-\frac{1}{2}C(A+B)\bigg ) \frac{\partial }{\partial z_1}+ \frac{1}{2}B(C-D) \frac{\partial }{\partial z_2}. \end{aligned}$$

By symmetry,

$$\begin{aligned} R\bigg (\frac{\partial }{\partial \tau }, \frac{\partial }{\partial z_2}\bigg ) \frac{\partial }{\partial \tau } \,=\, \frac{ED}{4} \frac{\partial }{\partial \tau }+ \bigg (-\frac{E^2}{4}-\frac{1}{2}D(A+B)\bigg ) \frac{\partial }{\partial z_2}+ \frac{1}{2}A(D-C) \frac{\partial }{\partial z_1}. \end{aligned}$$

Now we compute the Ricci curvature defined in (2.7):

$$\begin{aligned}{} & {} {\textrm{Ricci}} \bigg (\frac{\partial }{\partial z_1},\, \frac{\partial }{\partial z_2}\bigg ) \,=\, {\textrm{Ricci}} \bigg (\frac{\partial }{\partial z_2},\, \frac{\partial }{\partial z_1}\bigg )\,=\,\frac{1}{4} (C^2+D^2); \\{} & {} \quad {\textrm{Ricci}} \bigg (\frac{\partial }{\partial \tau }, \,\frac{\partial }{\partial z_1}\bigg )\,=\, {\textrm{Ricci}} \bigg (\frac{\partial }{\partial z_1},\, \frac{\partial }{\partial \tau }\bigg )\,=\,\frac{1}{2}CE; \\{} & {} \quad {\textrm{Ricci}} \bigg (\frac{\partial }{\partial z_2},\, \frac{\partial }{\partial \tau }\bigg )\,=\, {\textrm{Ricci}} \bigg (\frac{\partial }{\partial \tau },\, \frac{\partial }{\partial z_2}\bigg )\,=\,\frac{1}{2}DE; \\{} & {} \quad {\textrm{Ricci}} \bigg (\frac{\partial }{\partial z_1},\, \frac{\partial }{\partial z_1}\bigg )\,=\,\frac{1}{4}(C^2+2CD-D^2); \\{} & {} \quad {\textrm{Ricci}} \bigg (\frac{\partial }{\partial z_2}, \,\frac{\partial }{\partial z_2}\bigg )\,=\,\frac{1}{4}(D^2+2CD-C^2); \\{} & {} \quad {\textrm{Ricci}} \bigg (\frac{\partial }{\partial \tau },\, \frac{\partial }{\partial \tau }\bigg )\,=\, \frac{1}{2}E^2+ \frac{1}{2}(A+B)(C+D). \end{aligned}$$

Recall from (2.6) the formula for the Weyl projective tensor W in dimension three:

$$\begin{aligned} W(X,\,Y)Z= & {} R(X,\,Y)Z-\frac{1}{4} {\textrm{Tr}}R(X,\,Y)Z-\frac{1}{2} [{\textrm{Ricci}}(Y,\,Z)X- {\textrm{Ricci}}(X,\,Z)(Y)]\\{} & {} - \frac{1}{8} [{\textrm{Tr}}R(Y,\,Z)X-{\textrm{Tr}}R(X,\,Z)(Y)]. \end{aligned}$$

Also, recall that the connection \(\nabla \) is projectively flat if and only if the tensor W vanishes identically. The Weyl projective tensor W is anti-symmetric in \((X,\, Y)\) and satisfies the first Bianchi identity in (2.8).

Since \({\textrm{Ricci}}\) for \(\nabla \) is symmetric, it follows that \({\textrm{Tr}}R\) vanishes identically. Connections with symmetric Ricci tensor are called equiaffine. The geometrical meaning of it is that there is a parallel holomorphic volume form [47, p. 222, Appendix A.3]. The above formula for Weyl projective tensor for \(\nabla \) reduces to

$$\begin{aligned} W(X,\,Y)Z\,=\, R(X,Y)Z-\frac{1}{2} [{\textrm{Ricci}}(Y,Z)X-{\textrm{Ricci}}(X,Z)(Y) ]. \end{aligned}$$

The computation for \(W(\frac{\partial }{\partial z_1}, \frac{\partial }{\partial z_2}) \frac{\partial }{\partial z_2}\) is as follows:

$$\begin{aligned}{} & {} W\bigg (\frac{\partial }{\partial z_1}, \frac{\partial }{\partial z_2}\bigg ) \frac{\partial }{\partial z_2}\,=\, R\bigg (\frac{\partial }{\partial z_1}, \frac{\partial }{\partial z_2}\bigg )\frac{\partial }{\partial z_2}-\frac{1}{2} [{\textrm{Ricci}}\bigg (\frac{\partial }{\partial z_2}, \frac{\partial }{\partial z_2}\bigg )\frac{\partial }{\partial z_1}-{\textrm{Ricci}}\bigg (\frac{\partial }{\partial z_1}, \frac{\partial }{\partial z_2})\frac{\partial }{\partial z_2}\bigg )]\\{} & {} \quad =\,\frac{1}{4}(2CD-C^2) \frac{\partial }{\partial z_1} -\frac{1}{4}CD \frac{\partial }{\partial z_2}-\frac{1}{8}(D^2+2CD-C^2) \frac{\partial }{\partial z_1} + \frac{1}{8} (C^2+D^2)\frac{\partial }{\partial z_2} \\{} & {} \quad =\,-\frac{1}{8} (C-D)^2 \frac{\partial }{\partial z_1} + \frac{1}{8} (C-D)^2 \frac{\partial }{\partial z_2}. \end{aligned}$$

Hence

$$\begin{aligned} W\bigg (\frac{\partial }{\partial z_1}, \frac{\partial }{\partial z_2}\bigg ) \frac{\partial }{\partial z_2}\,=\, -\frac{1}{8} (C-D)^2 \frac{\partial }{\partial z_1} + \frac{1}{8} (C-D)^2 \frac{\partial }{\partial z_2}. \end{aligned}$$

Also,

$$\begin{aligned}{} & {} W\bigg (\frac{\partial }{\partial z_1}, \frac{\partial }{\partial z_2}\bigg ) \frac{\partial }{\partial z_1}\,=\, R\bigg (\frac{\partial }{\partial z_1}, \frac{\partial }{\partial z_2}\bigg )\frac{\partial }{\partial z_1}-\frac{1}{2} [{\textrm{Ricci}}\bigg (\frac{\partial }{\partial z_2}, \frac{\partial }{\partial z_1}\bigg )\frac{\partial }{\partial z_1}-{\textrm{Ricci}}\bigg (\frac{\partial }{\partial z_1}, \frac{\partial }{\partial z_1})\frac{\partial }{\partial z_2}\bigg )]\\{} & {} \quad =\,\frac{1}{4}CD \frac{\partial }{\partial z_1} + \frac{1}{4}(D^2-2CD)\frac{\partial }{\partial z_2}-\frac{1}{8}(C^2+D^2) \frac{\partial }{\partial z_1} + \frac{1}{8} (C^2+2CD-D^2)\frac{\partial }{\partial z_2} \\{} & {} \quad =-\frac{1}{8}\, (C-D)^2 \frac{\partial }{\partial z_1} + \frac{1}{8} (C-D)^2 \frac{\partial }{\partial z_2}. \end{aligned}$$

In conclusion,

$$\begin{aligned} W\bigg (\frac{\partial }{\partial z_1},\, \frac{\partial }{\partial z_2}\bigg ) \frac{\partial }{\partial z_1} \,=\, -\frac{1}{8} (C-D)^2 \frac{\partial }{\partial z_1} + \frac{1}{8} (C-D)^2 \frac{\partial }{\partial z_2}. \end{aligned}$$

We get that

$$\begin{aligned} W\bigg (\frac{\partial }{\partial z_1}, \frac{\partial }{\partial z_2}\bigg ) \frac{\partial }{\partial \tau }= & {} R\bigg (\frac{\partial }{\partial z_1}, \frac{\partial }{\partial z_2}\bigg )\frac{\partial }{\partial \tau }-\frac{1}{2} [{\textrm{Ricci}}\bigg (\frac{\partial }{\partial z_2}, \frac{\partial }{\partial \tau }\bigg )\frac{\partial }{\partial z_1} \\{} & {} -{\textrm{Ricci}}\bigg (\frac{\partial }{\partial z_1}, \frac{\partial }{\partial \tau })\frac{\partial }{\partial z_2}\bigg )]\,=\, 0. \end{aligned}$$

Hence we have

$$\begin{aligned} W\bigg (\frac{\partial }{\partial z_1},\, \frac{\partial }{\partial z_2}\bigg ) \frac{\partial }{\partial \tau }\,=\, 0. \end{aligned}$$

By similar direct computations we get that

$$\begin{aligned} W\bigg (\frac{\partial }{\partial \tau },\, \frac{\partial }{\partial z_1}\bigg ) \frac{\partial }{\partial z_2}\,=\,\frac{1}{8} (C-D)^2 \frac{\partial }{\partial \tau } \end{aligned}$$

and

$$\begin{aligned} W\bigg (\frac{\partial }{\partial \tau }, \,\frac{\partial }{\partial z_1}\bigg ) \frac{\partial }{\partial \tau }\,=\, \frac{1}{4}(A+B)(D-C)\frac{\partial }{\partial z_1} + \frac{1}{2} B(C-D) \frac{\partial }{\partial z_2}. \end{aligned}$$

Also by direct computation:

$$\begin{aligned} W\bigg (\frac{\partial }{\partial \tau }, \,\frac{\partial }{\partial z_1}\bigg ) \frac{\partial }{\partial z_1}\,=\, \frac{1}{8} (C-D)^2 \frac{\partial }{\partial \tau } \end{aligned}$$

and

$$\begin{aligned} W\bigg (\frac{\partial }{\partial \tau }, \,\frac{\partial }{\partial z_2}\bigg ) \frac{\partial }{\partial z_2} \,=\, \frac{1}{8} (C-D)^2 \frac{\partial }{\partial \tau }. \end{aligned}$$

Again by a direct computation,

$$\begin{aligned} W\bigg (\frac{\partial }{\partial z_2},\, \frac{\partial }{\partial \tau }\bigg ) \frac{\partial }{\partial \tau }\,=\, \frac{1}{2}A(C-D) \frac{\partial }{\partial z_1}+ \frac{1}{4}(A+B)(D-C)\frac{\partial }{\partial z_2}. \end{aligned}$$

The other components of the Weyl tensor can be obtained using the first Bianchi identity in (2.8). Indeed, from

$$\begin{aligned} W\bigg (\frac{\partial }{\partial z_1}, \,\frac{\partial }{\partial z_2}\bigg ) \frac{\partial }{\partial \tau }+ W(\frac{\partial }{\partial z_2},\, \frac{\partial }{\partial \tau }) \frac{\partial }{\partial z_1}+ W\bigg (\frac{\partial }{\partial \tau },\, \frac{\partial }{\partial z_1}\bigg ) \frac{\partial }{\partial z_2}\,=\,0 \end{aligned}$$

we infer that

$$\begin{aligned} W\bigg (\frac{\partial }{\partial z_2}, \,\frac{\partial }{\partial \tau }\bigg ) \frac{\partial }{\partial z_1}\,=\,-\frac{1}{8}(C-D)^2 \frac{\partial }{\partial \tau }. \end{aligned}$$
(5.2)

Notice that the Weyl projective tensor W does not depend on the parameter E. This is due to the facts that W is a projective invariant and \(\nabla ^{A,B,C,D,E}\) is projectively equivalent with \(\nabla ^{A,B,C,D,0}\). Indeed, let \(\phi _{\tau }\) be the holomorphic one-form on \({{\mathbb {T}}}^3\) defined by

$$\begin{aligned} \phi _{\tau } \bigg (\frac{\partial }{\partial \tau }\bigg )\,=\, \frac{1}{2}E\ \ \text { and }\ \ \phi _{\tau } \bigg (\frac{\partial }{\partial z_i}\bigg )\, =\, 0 \end{aligned}$$

for \(i=1,2\). Then

$$\begin{aligned} \nabla ^{A,B,C,D,E}_XY -\nabla ^{A,B,C,D,0}_XY\,=\, \phi _{\tau }(X)(Y)+ \phi _{\tau }(Y)X \end{aligned}$$
(5.3)

for all holomorphic vector fields \(X,\, Y\); the identity in (5.3) being tensorial it can be easily verified for any pair of vectors chosen from the basis \((\frac{\partial }{\partial \tau }, \,\frac{\partial }{\partial z_1},\, \frac{\partial }{\partial z_2})\). From (5.3) it follows immediately that \(\nabla ^{A,B,C,D,E}\) and \(\nabla ^{A,B,C,D,0}\) are projectively equivalent.

From (5.2) and the expression of all components of the Weyl projective tensor, it follows that W vanishes identically if and only if \(C\,=\, D\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, I., Dumitrescu, S. Holomorphic projective connections on compact complex threefolds. Math. Z. 304, 27 (2023). https://doi.org/10.1007/s00209-023-03286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03286-7

Keywords

Mathematics Subject Classification

Navigation