Skip to main content
Log in

Twisted differentials and Lee classes of locally conformally symplectic complex surfaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the set of deRham classes of Lee 1-forms of the locally conformally symplectic (LCS) structures taming the complex structure of a compact complex surface in the Kodaira class VII, and show that the existence of non-trivial upper/lower bounds with respect to the degree function correspond respectively to the existence of certain negative/non-negative PSH functions on the universal cover. We use this to prove that the set of Lee deRham classes of taming LCS is connected, as well as to obtain an explicit negative upper bound for this set on the hyperbolic Kato surfaces. This leads to a complete description of the sets of Lee classes on the known examples of class VII complex surfaces, and to a new obstruction to the existence of bi-hermitian structures on the hyperbolic Kato surfaces of the intermediate type. Our results also reveal a link between bounds of the set of Lee classes and non-trivial logarithmic holomorphic 1-forms with values in a flat holomorphic line bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angella, D., Kasuya, H.: Hodge theory for twisted differentials. Complex Manifolds 1, 64–85 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Apostolov, V.: Bi-Hermitian surfaces with odd first Betti number. Math. Z. 238, 555–568 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Apostolov, V., Bailey, M., Dloussky, G.: From locally conformally Kähler to bihermitian structures on non-Kähler complex surfaces. Math. Res. Lett. 22, 317–336 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Apostolov, V., Dloussky, G.: Bihermitian metrics on Hopf surfaces. Math. Res. Lett. 15, 827–839 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Apostolov, V., Dloussky, G.: Locally conformally symplectic structures on compact non-Kähler complex surfaces. Int. Math. Res. Not. (IMRN) 9, 2717–2747 (2016)

    MATH  Google Scholar 

  6. Apostolov, V., Dloussky, G.: On the Lee classes of locally conformally symplectic complex surfaces. J. Sympl. Geom. 16, 931–958 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Apostolov, V., Gauduchon, P., Grantcharov, G.: Bihermitian structures on complex surfaces. Proc. Lond. Math. Soc. (3) 79, 414–428 (1999). Corrigendum 92, 200–202 (2006)

  8. Barth, W., Hulek, K., Peters, C., Van de Ven, A.: Compact Complex Surfaces, 2nd edn. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  9. Belgun, F.: On the metric structure of non-Kähler complex surfaces. Math. Ann. 317, 1–40 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Besse, A.L.: Einstein Manifolds. Springer-Verlag, Berlin, Heidelberg, New York (1987)

    MATH  Google Scholar 

  11. Brunella, M.: Birational Geometry of Foliations. IMPA Monographs, Springer, Cham (2015)

    MATH  Google Scholar 

  12. Brunella, M.: Locally conformally Kähler metrics on certain non-Kählerian surfaces. Math. Ann. 346, 629–639 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Brunella, M.: Locally conformally Kähler metrics on Kato surfaces. Nagoya Math. J. 202, 77–81 (2010)

    MATH  Google Scholar 

  14. Brunella, M.: A characterization of Inoue surfaces. Comment. Mat. Helv. 88, 859–874 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Brunella, M.: A characterization of hyperbolic Kato surfaces. Publ. Mat. 58, 251–261 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Buchdahl, N.: On compact Kähler surfaces. Ann. Inst. Fourier 49, 287–302 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Camacho, C., Sad, P.: Invariant varieties through singularities of holomorphic vector fields. Ann. Math. 115, 579–595 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Cavalcanti, G., Gualtieri, M.: Blowing up generalized Kähler \(4\)-manifolds. Bull. Braz. Math. Soc. New Series 42, 537–557 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Demailly, J.-P.: Complex Analytic and Differential Geometry. Available at https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf

  20. Dloussky, G.: Structure des surfaces de Kato. Mém. Soc. Math. France Sér. 14, 122 (1984)

    MathSciNet  MATH  Google Scholar 

  21. Dloussky, G.: Une construction élémentaire des surfaces d’Inoue-Hirzebruch. Math. Ann. 280, 663–682 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Dloussky, G.: Complex surfaces with Betti numbers \(b_1=1\), \(b_2>0\) and finite quotients. Contemp. Math. (AMS) 288, 305–309 (2001)

    MATH  Google Scholar 

  23. Dloussky, G.: On surfaces of class \({\rm VII}_0^+\) with numerically anti-canonical divisor. Am. J. Math. 128, 639–670 (2006)

    MATH  Google Scholar 

  24. Dloussky, G.: Non-Kählerian surfaces with a cycle of rational curves. Complex Manifolds 8, 208–222 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Dloussky, G., Kohler, F.: Classification of singular germs of mappings and deformations of compact surfaces of class VII \(_0\). Ann. Polonici Math. LXX, 49–83 (1998)

    MathSciNet  MATH  Google Scholar 

  26. Dloussky, G., Oeljeklaus, K.: Vector fields and foliations on compact surfaces of class \({\rm VII}_0\). Ann. Inst. Fourier 49, 1503–1545 (1999)

    MathSciNet  MATH  Google Scholar 

  27. Enoki, I.: Surfaces of class \({\rm VII}_{0}\) with curves. Tôhoku Math. J. 33, 443–492 (1981)

    MathSciNet  Google Scholar 

  28. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. AMS, Rhode Island (1949)

    Google Scholar 

  29. Favre, C.: Classification of \(2\)-dimensional contracting rigid germs. J. Math. Pure. Appl. 79, 475–514 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Fujiki, A., Pontecorvo, M.: Numerically anticanonical divisors on Kato surfaces. J. Geom. Phys. 91, 117–130 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Fujiki, A., Pontecorvo, M.: Bi-Hermitian metrics on Kato surfaces. J. Geom. Phys. 138, 33–43 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Gauduchon, P.: Le théorème d’excentricité nulle. C. R. Acad. Sci. Paris 285, 387–390 (1977)

    MathSciNet  MATH  Google Scholar 

  33. Gauduchon, P.: La 1-forme de torsion d’une variété hermitienne. Math. Ann. 267, 495–518 (1984)

    MathSciNet  MATH  Google Scholar 

  34. Gauduchon, P., Ornea, L.: Locally conformally Kähler metrics on Hopf surfaces. Ann. Inst. Fourier (Grenoble) 48, 1107–1127 (1998)

    MathSciNet  MATH  Google Scholar 

  35. Goto, R.: Unobstructed K-deformations of generalized complex structures and bi-Hermitian structures. Adv. Math. 231, 1041–1067 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Gualtieri, M.: Generalized Kähler geometry. Commun. Math. Phys. 331, 297–331 (2014)

    MATH  Google Scholar 

  37. Harvey, R., Lawson, H., Jr.: Blaine: An intrinsic characterization of Kähler manifolds. Invent. Math. 74, 169–198 (1983)

    MathSciNet  MATH  Google Scholar 

  38. Inoue, M.: On surfaces of class \({\rm VII}_0\). Invent. Math. 24, 269–310 (1974)

    MathSciNet  Google Scholar 

  39. Inoue, M.: New surfaces with no meromorphic functions. In: Baily, W., Shioda, T. (eds.) Complex Analysis and Algebraic Geometry, pp. 91–106. Iwanami Shoten Publ., Cambridge Univ. Press, London (1977)

    Google Scholar 

  40. Kato, M.: Compact complex surfaces containing “global spherical shells”. In: Proceedings of the Int. Symp. Alg. Geometry. Kyoto Univ., Kyoto, pp. 45–84 (1977). Kinokuniya Book Store, Tokyo (1978)

  41. Kato, M., Topology of Hopf surfaces. J. Math. Soc. Jpn. 27, 173–174 (1975). Erratum J. Math. Soc. Jpn. 41, 222–238 (1989)

  42. Kodaira, K.: On the structure of complex analytic surfaces I. Am. J. Math. 86, 751–798 (1966)

    MathSciNet  MATH  Google Scholar 

  43. Kodaira, K.: On the structure of complex analytic surfaces II. Am. J. Math. 88, 682–721 (1966)

    MathSciNet  MATH  Google Scholar 

  44. Kodaira, K.: On the structure of complex analytic surfaces III. Am. J. Math. 90, 55–83 (1968)

    MathSciNet  Google Scholar 

  45. Lamari, A.: Courants kählériens et surfaces compactes. Ann. Inst. Fourier 49, 263–285 (1999)

    MathSciNet  MATH  Google Scholar 

  46. Laufer, H.B.: Normal Two-dimensional Singularities. Annals of Math. Studies, Princeton Univ. Press, Princeton (1971)

    MATH  Google Scholar 

  47. Nakamura, I.: On surfaces of class \({\rm VII}_0\) with curves. Invent. Math. 78, 393–444 (1984)

    MathSciNet  Google Scholar 

  48. Nakamura, I.: On surfaces of class \(VII_{0}\) with curves II. Tôhoku Math. J. 42, 475–516 (1990)

    Google Scholar 

  49. Nakamura, I.: Towards classification of non-Kählerian complex surfaces. Sugaku 36, 110–124 (1984)

    MathSciNet  MATH  Google Scholar 

  50. Ornea, L., Verbitsky, M.: Lee classes on LCK manifolds with potential. arXiv:2112.03363

  51. Otiman, A.: Currents on locally conformally Kähler manifolds. J. Geom. Phys. 86, 564–570 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Pontecorvo, M.: First Chern class and birational germs of Kato surfaces. Boll. Unione Mat. Ital. 12, 239–249 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Schaeffer, H.H.: Topological Vector Spaces. Springer, Berlin, Heidelberg, New York (1971)

    Google Scholar 

  54. Schiffman, B.: On the removal of singularities of analytic sets. Michigan Math. J. 15, 111–120 (1968)

    MathSciNet  Google Scholar 

  55. Schwartz, L.: Théorie des distributions. Hermann, Paris (1978)

    MATH  Google Scholar 

  56. Steenbrink, J., van Straten, D.: Extendability of holomorphic differential forms near isolated hypersurface singularities. Abh. Math. Sem. Univ. Hamburg 55, 97–110 (1985)

    MathSciNet  MATH  Google Scholar 

  57. Streets, J., Tian, G.: A parabolic flow of pluriclosed metrics. Inter. Math. Res. Notices (IMRN) 2010, 3101–3133 (2010)

    MathSciNet  MATH  Google Scholar 

  58. Streets, J., Ustinovskiy, Y.: Classification of generalized Kahler-Ricci solitons on complex surfaces. Commun. Pure Appl. Math. 74, 1896–1914 (2020). https://doi.org/10.1002/cpa.21947

    Article  MATH  Google Scholar 

  59. Siu, Y.-T.: Every \(K3\) surface is Kähler. Invent. Math. 73, 139–150 (1983)

    MathSciNet  MATH  Google Scholar 

  60. Teleman, A.: Projectively flat surfaces and Bogomolov’s theorem on class \({\rm VII}_0\)-surfaces. Int. J. Math. 5, 253–264 (1994)

    MATH  Google Scholar 

  61. Teleman, A.: Donaldson theory on non-Kählerian surfaces and class VII surfaces with \(b_2=1\). Invent. Math. 162, 493–521 (2005)

    MathSciNet  MATH  Google Scholar 

  62. Teleman, A.: The pseudo-effective cone of a non-Kählerian surface and applications. Math. Ann. 335, 965–989 (2006)

    MathSciNet  MATH  Google Scholar 

  63. Tsukada, K.: Holomorphic forms and holomorphic vector fields on compact generalized Hopf manifolds. Composition Math. 93, 1–22 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vestislav Apostolov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

To the memory of Marco Brunella whose work inspired us.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

V.A. was supported in part by a “Connect Talent” Grant of the Région des Pays de la Loire in France. He is also grateful to the Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences where a part of this project was realized. G.D. thanks the University of Nantes for their support and hospitality. The authors warmly thank S. Dinew and A. Zeriahi for their advise on the theory of PSH functions. V.A. is grateful to B. Chantraine for his interest in our work and valuable discussions on the topology of LCS manifolds.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 353 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apostolov, V., Dloussky, G. Twisted differentials and Lee classes of locally conformally symplectic complex surfaces. Math. Z. 303, 76 (2023). https://doi.org/10.1007/s00209-023-03242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03242-5

Navigation