Skip to main content
Log in

The (qt)-Cartan matrix specialized at \(q=1\) and its applications

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The (qt)-Cartan matrix specialized at \(t=1\), usually called the quantum Cartan matrix, has deep connections with (i) the representation theory of its untwisted quantum affine algebra, and (ii) quantum unipotent coordinate algebra, root system and quantum cluster algebra of skew-symmetric type. In this paper, we study the (qt)-Cartan matrix specialized at \(q=1\), called the t-quantized Cartan matrix, and investigate the relations with (ii\('\)) its corresponding unipotent quantum coordinate algebra, root system and quantum cluster algebra of skew-symmetrizable type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [15],  (3.10) was called \(\mathfrak {g}\)-additive property.

References

  1. Bedard, R.: On commutation classes of reduced words in Weyl groups. Eur. J. Combin. 20, 483–505 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berenstein, A., Zelevinsky, A.: Quantum cluster algebras. Adv. Math. 195(2), 405–455 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bittmann, L.: A quantum cluster algebra approach to representations of simply laced quantum affine algebras. Math. Z. 20, 1–37 (2020)

    MathSciNet  Google Scholar 

  4. Date, E., Okado, M.: Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \(A_n^{(1)}\). Int. J. Mod. Phys. A 9, 399–417 (1994)

    Article  MATH  Google Scholar 

  5. Fomin, S., Zelevinsky, A.: Double Bruhat cells and total positivity. J. Am. Math. Soc. 12, 335–380 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fomin, S., Zelevinsky, A.: Cluster algebras I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frenkel, E., Hernandez, D.: Langlands duality for finite-dimensional representations of quantum affine algebras. Lett. Math. Phys. 96, 217–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frenkel, E., Hernandez, D., Reshetikhin, N.: Folded quantum integrable models and deformed W-algebras. Lett. Math. Phys. 112, 25 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frenkel, E., Mukhin, E.: Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216(1), 23–57 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frenkel, E., Reshetikhin, N.: Deformations of \(\cal{W} \)-algebras associated to simple Lie algebras. Commun. Math. Phys. 197(1), 1–32 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frenkel, E., Reshetikhin, N.: The q-characters of representations of quantum affine algebras. Recent developments in quantum affine algebras and related topics. Contemp. Math. 248, 163–205 (1999)

    Article  MATH  Google Scholar 

  12. Fujita, R.: Graded quiver varieties and singularities of normalized R-matrices for fundamental modules. Sel. Math. (N.S.) 28(1), 1–45 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fujita, R., Hernandez, D., S-j, Oh., Oya, H.: Isomorphisms among quantum Grothendieck rings and propagation of positivity. J. Reine Angew. Math. 785, 117–185 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fujita, R., Murakami, K.: Deformed Cartan matrices and generalized preprojective algebras I: Finite type. arXiv:2109.07985v3

  15. Fujita, R., S-j, Oh.: \(Q\)-datum and Representation theory of untwisted quantum affine algebras. Commun. Math. Phys. 384, 1351–1407 (2021)

    Article  MATH  Google Scholar 

  16. Geiß, C., Leclerc, B., Schröer, J.: Cluster structures on quantum coordinate rings. Sel. Math. (N.S.) 19(2), 337–397 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goodearl, K., Yakimov, M.: Quantum cluster algebra structures on quantum nilpotent algebras. Mem. Am. Math. Soc. 247(1169), vii+119 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Happel, D.: On the derived category of a finite-dimensional algebra. Comment. Math. Helv. 62(3), 339–389 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hernandez, D.: \(t\)-analogues des opérateurs d’écrantage associés aux q-caractères. Int. Math. Res. Not. 8, 451–475 (2003)

    Article  MATH  Google Scholar 

  20. Hernandez, D.: Algebraic approach to \(q, t\)-characters. Adv. Math. 187(1), 1–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hernandez, D.: The Kirillov–Reshetikhin conjecture and solutions of \(T\)-systems. J. Reine Angew. Math. 596, 63–87 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Hernandez, D., Leclerc, B.: Quantum Grothendieck rings and derived Hall algebras. J. Reine Angew. Math. 701, 77–126 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Hernandez, D., Leclerc, B.: A cluster algebra approach to q-characters of Kirillov–Reshetikhin modules. J. Eur. Math. Soc. 18(5), 1113–1159 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hernandez, D., Oya, H.: Quantum Grothendieck ring isomorphisms, cluster algebras and Kazhdan–Lusztig algorithm. Adv. Math. 347, 192–272 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9. Springer, New York (1972)

    Book  Google Scholar 

  26. Humphreys, J.E.: Quivers with relations for symmetrizable Cartan matrices I: foundations. Invent. Math. 209(1), 61–158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jang, I.-S., Lee, K.-H., Oh, S.-j.: Quantization of virtual Grothendieck rings and their structure including quantum cluster algebra (in preparation)

  28. Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras II. Duke Math. J. 164, 1549–1602 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.-J.: Monoidal categorification of cluster algebras. J. Am. Math. Soc. 31(2), 349–426 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kashiwara, M.: On crystal bases of the \(q\)-analogue of universal enveloping algebras. Duke Math. J. 63, 465–516 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kashiwara, M.: Global crystal bases of quantum groups. Duke Math. J. 69(2), 455–485 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kashiwara, M., Kim, M., Oh, S.-J., Park, E.: Monoidal categorification and quantum affine algebras. Compos. Math. 156(2), 1039–1077 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kashiwara, M., Kim, M., Oh, S.-j., Park, E.: PBW theory for quantum affine algebras. arXiv:2011.14253 (to appear in the J. Eur. Math. Soc.)

  34. Kashiwara, M., Kim, M., Oh, S.-j., Park, E.: Monoidal categorification and quantum affine algebras II. arXiv:2103.10067v2

  35. Kashiwara, M., S-j, Oh.: Categorical relations between Langlands dual quantum affine algebras: doubly laced types. J. Algebr. Combin. 49, 401–435 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kashiwara, M., Oh, S-j.: \(t\)-quantized Cartan matrix and \(R\)-matrices for cuspidal modules over quiver Hecke algebras (in preparation)

  37. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups I. Represent. Theory 13, 309–347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups II. Trans. Am. Math. Soc. 363, 2685–2700 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3(2), 447–498 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lusztig, G.: Quivers, perverse sheaves, and quantized enveloping algebras. J. Am. Math. Soc. 4(2), 365–421 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nakajima, H.: \(t\)-analogs of \(q\)-characters of Kirillov–Reshetikhin modules of quantum affine algebras. Represent. Theory 7, 259–274 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nakajima, H.: Quiver varieties and t-analogs of q-characters of quantum affine algebras. Ann. Math. 2(160), 1057–1097 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Oh, S.-J.: The denominators of normalized R-matrices of types \(A_{2n-1}^{(2)}\), \(A_{2n}^{(2)}\), \(B_{n}^{(1)}\), and \(D_{n+1}^{(2)}\). Publ. Res. Inst. Math. Sci. 51(4), 709–744 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Oh, S.-J., Scrimshaw, T.: Categorical relations between Langlands dual quantum affine algebras: exceptional cases. Commun. Math. Phys. 368(1), 295–367 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Oh, S.-J., Suh, U.R.: Combinatorial Auslander–Reiten quivers and reduced expressions. J. Korean Math. Soc. 56(2), 353–385 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Oh, S.-J., Suh, U.R.: Twisted and folded Auslander–Reiten quiver and applications to the representation theory of quantum affine algebras. J. Algebras 535, 53–132 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rouquier, R.: \(2\)-Kac-Moody algebras. arXiv:0812.5023v1

  48. Schiffler, R.: Quiver Representations. CMS Books in Mathematics/Ouvrages de MathéMatiques de la SMC. Springer, Cham (2014)

    Google Scholar 

  49. Varagnolo, M., Vasserot, E.: Perverse sheaves and quantum Grothendieck rings. In: Studies in Memory of Issai Schur, Progr Math, vol. 210, pp. 345–365. Birkhäuser-Verlag, Basel (2002)

    Google Scholar 

Download references

Acknowledgements

The second author is grateful to I.-S. Jang, Y.-H. Kim, K.-H. Lee and R. Fujita for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-jin Oh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of M. Kashiwara was supported by Grant-in-Aid for Scientific Research (B) 20H01795, Japan Society for the Promotion of Science.

The research of S.-j. Oh was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2022R1A2C1004045).

Appendix A: \(\widetilde{\mathfrak {d}}_{i,j}(t)\) for \(E_7\) and \(E_8\)

Appendix A: \(\widetilde{\mathfrak {d}}_{i,j}(t)\) for \(E_7\) and \(E_8\)

1.1 A.1 \(E_7\)

Here is the list of \(\widetilde{\mathfrak {d}}_{i,j}(t)\) for \(E_7\).

$$\begin{aligned}&\widetilde{\mathfrak {d}}_{1,1}(t) = t^1+t^{7}+t^{11}+t^{17}, \qquad \widetilde{\mathfrak {d}}_{1,2}(t) = t^4+t^{8}+t^{10}+t^{14}, \\&\widetilde{\mathfrak {d}}_{1,3}(t)=t^2+t^{6}+t^{8}+t^{10}+t^{12}+t^{16}, \ \qquad \widetilde{\mathfrak {d}}_{1,4}(t)=t^3+t^{5}+t^{7}+2t^{9}+t^{11}+t^{13}+t^{15},\\&\widetilde{\mathfrak {d}}_{1,6}(t)=t^5+t^{7}+t^{11}+t^{13}, \qquad \widetilde{\mathfrak {d}}_{1,7}(t)=t^6+t^{12}, \\&\widetilde{\mathfrak {d}}_{2,2}(t)=t^1+t^{5}+t^{7}+t^{9}+t^{11}+t^{13}+t^{17}, \qquad \widetilde{\mathfrak {d}}_{2,3}(t)=\widetilde{\mathfrak {d}}_{1,4}(t) \\&\widetilde{\mathfrak {d}}_{2,4}(t)=t^2+t^{4}+2t^{6}+2t^{8}+2t^{10}+2t^{12}+t^{14}+t^{16}, \\&\widetilde{\mathfrak {d}}_{2,5}(t)=t^3+t^{5}+2t^{7}+t^{9}+2t^{11}+t^{13}+t^{15}, \ \widetilde{\mathfrak {d}}_{2,7}(t)=t^{5}+t^{9}+t^{13}, \\&\widetilde{\mathfrak {d}}_{2,6}(t)=t^{4}+t^{6}+t^{8}+t^{10}+t^{12}+t^{14}, \\&\widetilde{\mathfrak {d}}_{3,3}(t) = t^1+t^{3}+t^{5}+2t^{7}+2t^{9}+2t^{11}+t^{13}+t^{15}+t^{17}, \\&\widetilde{\mathfrak {d}}_{3,4}(t) = t^2+2t^{4}+2t^{6}+3t^{8}+3t^{10}+2t^{12}+2t^{14}+t^{16}, \\&\widetilde{\mathfrak {d}}_{3,5}(t) = t^{3}+2t^{5}+2t^{7}+2t^{9}+2t^{11}+2t^{13}+t^{15}, \\&\widetilde{\mathfrak {d}}_{3,6}(t) = t^{4}+2t^{6}+t^{8}+t^{10}+2t^{12}+t^{14}, \qquad \widetilde{\mathfrak {d}}_{3,7}(t) = t^{5}+t^{7}+t^{11}+t^{13}, \\&\widetilde{\mathfrak {d}}_{4,4}(t) = t^1+2t^{3}+3t^{5}+4t^{7}+4t^{9}+4t^{11}+3t^{13}+2t^{15}+t^{17}, \\&\widetilde{\mathfrak {d}}_{4,5}(t) = t^2+2t^{4}+3t^{6}+3t^{8}+3t^{10}+3t^{12}+2t^{14}+t^{16}, \\&\widetilde{\mathfrak {d}}_{4,6}(t) =\widetilde{\mathfrak {d}}_{3,5}(t), \qquad \widetilde{\mathfrak {d}}_{4,7}(t) = t^{4}+t^{6}+t^{8}+t^{10}+ t^{12}+ t^{14}, \\&\widetilde{\mathfrak {d}}_{5,5}(t) = t^1+t^{3}+2t^{5}+2t^{7}+3t^{9}+2t^{11}+2t^{13}+t^{15}+t^{17}, \\&\widetilde{\mathfrak {d}}_{5,6}(t) = t^2+t^{4}+t^{6}+2t^{8}+2t^{10}+t^{12}+t^{14}+t^{16}, \quad \widetilde{\mathfrak {d}}_{5,7}(t) = t^{3}+t^{7}+t^{11}+t^{15}, \\&\widetilde{\mathfrak {d}}_{6,6}(t) = t^1+t^{3}+t^{7}+2t^{9}+t^{11}+t^{15}+t^{17}, \qquad \widetilde{\mathfrak {d}}_{6,7}(t) = t^2+t^{8}+t^{10}+t^{16}, \\&\widetilde{\mathfrak {d}}_{7,7}(t) = t^1+t^{9}+t^{17} \qquad \text { and } \qquad \widetilde{\mathfrak {d}}_{i,j}(t) = \widetilde{\mathfrak {d}}_{j,i}(t). \end{aligned}$$

1.2 A.2 \(E_8\)

Here is the list of \(\widetilde{\mathfrak {d}}_{i,j}(t)\) for \(E_8\).

$$\begin{aligned} \widetilde{\mathfrak {d}}_{1,1}(t)&= t^1+t^{7}+t^{11}+t^{13}+t^{17}+t^{19}+t^{23}+t^{29}, \\ \widetilde{\mathfrak {d}}_{1,2}(t)&= t^4+t^{8}+t^{10}+t^{12}+t^{14}+t^{16}+t^{18}+t^{20}+t^{22}+t^{26}, \\ \widetilde{\mathfrak {d}}_{1,3}(t)&= t^2+t^{6}+t^{8}+t^{10}+2t^{12}+t^{14}+t^{16}+2t^{18}+t^{20}+t^{22}+t^{24}+t^{28}, \\ \widetilde{\mathfrak {d}}_{1,4}(t)&= t^3+t^{5}+t^{7}+2t^{9}+2t^{11}+2t^{13}+2t^{15}+2t^{17}+2t^{19}+2t^{21}+t^{23}+t^{25}+t^{27}, \\ \widetilde{\mathfrak {d}}_{1,5}(t)&= t^4+t^{6}+t^{8}+2t^{10}+t^{12}+2t^{14}+2t^{16}+t^{18}+2t^{20}+t^{22}+t^{24}+t^{26}, \\ \widetilde{\mathfrak {d}}_{1,6}(t)&= t^{5}+t^{7}+t^{9}+t^{11}+t^{13}+2t^{15}+t^{17}+t^{19}+t^{21}+t^{23}+t^{25}, \\ \widetilde{\mathfrak {d}}_{1,7}(t)&= t^{6}+t^{8}+t^{12}+t^{14}+t^{16}+t^{18}+t^{22}+t^{24}, \\ \widetilde{\mathfrak {d}}_{1,8}(t)&= t^{7}+t^{13}+t^{17}+t^{23}, \\ \widetilde{\mathfrak {d}}_{2,2}(t)&= t^1+t^{5}+t^{7}+t^{9}+2t^{11}+t^{13}+2t^{15}+t^{17}+2t^{19}+t^{21}+t^{23}+t^{25}+t^{29}, \\ \widetilde{\mathfrak {d}}_{2,3}(t)&= t^3+t^{5}+t^{7}+2(t^{9}+t^{11}+t^{13}+t^{15}+t^{17}+t^{19}+t^{21})+t^{23}+t^{25}+t^{27}, \\ \widetilde{\mathfrak {d}}_{2,4}(t)&= t^2+t^{4}+2t^{6}+2t^{8}+3(t^{10}+t^{12}+t^{14}+t^{16}+t^{18}+t^{20})+2t^{22}+2t^{24}+t^{26}+t^{28}, \\ \widetilde{\mathfrak {d}}_{2,5}(t)&= t^3+t^{5}+2t^{7}+2t^{9}+2t^{11}+3t^{13}+3t^{15}+3t^{17}+2t^{19}+2t^{21}+2t^{23}+t^{25}+t^{27}, \\ \widetilde{\mathfrak {d}}_{2,6}(t)&= t^4+t^{6}+2t^{8}+t^{10}+2t^{12}+2t^{14}+2t^{16}+2t^{18}+t^{20}+2t^{22}+t^{24}+t^{26}, \\ \widetilde{\mathfrak {d}}_{2,7}(t)&=\widetilde{\mathfrak {d}}_{1,6}(t), \qquad \qquad \qquad \widetilde{\mathfrak {d}}_{2,8}(t) = t^{6}+t^{10}+t^{14}+t^{16}+t^{20}+t^{24}, \\ \widetilde{\mathfrak {d}}_{3,3}(t)&= t^1+t^{3}+t^{5}+2t^{7}+2t^{9}+3t^{11}+3t^{13}+2t^{15}+3t^{17}+3t^{19}+2t^{21}+2t^{23} \\&\quad +t^{25}+t^{27}+t^{29}, \\ \widetilde{\mathfrak {d}}_{3,4}(t)&= t^2+2(t^{4}+t^{6})+3t^{8}+4(t^{10}+t^{12}+t^{14}+t^{16}+t^{18}+t^{20})+3t^{22}+2(t^{24}+t^{26})+t^{28}, \\ \widetilde{\mathfrak {d}}_{3,5}(t)&= t^3+2t^{5}+2t^{7}+3t^{9}+3t^{11}+3t^{13}+4t^{15}+3t^{17}+3t^{19}+3t^{21}+2t^{23}+2t^{25}+t^{27}, \\ \widetilde{\mathfrak {d}}_{3,6}(t)&= t^4+2t^{6}+2t^{8}+2t^{10}+2t^{12}+3t^{14}+3t^{16}+2t^{18}+2t^{20}+2t^{22}+2t^{24}+t^{26}, \\ \widetilde{\mathfrak {d}}_{3,7}(t)&= t^{5}+2t^{7}+t^{9}+t^{11}+2t^{13}+2t^{15}+2t^{17}+t^{19}+t^{21}+2t^{23}+t^{25}, \\ \widetilde{\mathfrak {d}}_{3,8}(t)&= t^{6}+t^{8}+t^{12}+t^{14}+t^{16}+t^{18}+t^{22}+t^{24}, \\ \widetilde{\mathfrak {d}}_{4,4}(t)&= t^1+2t^{3}+3t^{5}+4t^{7}+5t^{9}+6t^{11}+6t^{13}+6t^{15}+6t^{17}+6t^{19}+5t^{21}\\&\quad +4t^{23} +3t^{25}+2t^{27}+t^{29}, \\ \widetilde{\mathfrak {d}}_{4,5}(t)&= t^2+2t^{4}+3t^{6}+4t^{8}+4t^{10}+5t^{12}+5t^{14}+5t^{16}+5t^{18}+4t^{20}+4t^{22}\\&\quad +3t^{24}+2t^{26}+t^{28}, \\ \widetilde{\mathfrak {d}}_{4,6}(t)&= t^3+2t^{5}+3t^{7}+3t^{9}+3t^{11}+4t^{13}+4t^{15}+4t^{17}+3t^{19}+3t^{21}+3t^{23}+2t^{25}+t^{27}, \\ \widetilde{\mathfrak {d}}_{4,7}(t)&= \widetilde{\mathfrak {d}}_{3,6}(t), \ \ \widetilde{\mathfrak {d}}_{4,8}(t) = t^{5}+t^{7}+t^{9}+t^{11}+t^{13}+2t^{15}+t^{17}+t^{19}+t^{21}+t^{23}+t^{25}, \\ \widetilde{\mathfrak {d}}_{5,5}(t)&= t^1+t^{3}+2t^{5}+3t^{7}+3t^{9}+4t^{11}+4t^{13}+4t^{15}+4t^{17}+4t^{19}+3t^{21}\\&\quad +3t^{23}+2t^{25}+t^{27}+t^{29}, \\ \widetilde{\mathfrak {d}}_{5,6}(t)&= t^2+t^{4}+2t^{6}+2t^{8}+3t^{10}+3t^{12}+3t^{14}+3t^{16}+3t^{18}+3t^{20}+2t^{22}\\&\quad +2t^{24}+t^{26}+t^{28}, \\ \widetilde{\mathfrak {d}}_{5,7}(t)&= t^3+t^{5}+t^{7}+2t^{9}+2t^{11}+2t^{13}+2t^{15}+2t^{17}+2t^{19}+2t^{21}+t^{23}+t^{25}+t^{27}, \\ \widetilde{\mathfrak {d}}_{5,8}(t)&= t^{4}+t^{8}+t^{10}+t^{12}+t^{14}+t^{16}+t^{18}+t^{20}+t^{22}+t^{26}, \\ \widetilde{\mathfrak {d}}_{6,6}(t)&= t^1+t^{3}+t^{5}+t^{7}+2t^{9}+3t^{11}+2t^{13}+2t^{15}+2t^{17}+3t^{19}+2t^{21}\\&\quad +t^{23}+t^{25}+t^{27}+t^{29}, \\ \widetilde{\mathfrak {d}}_{6,7}(t)&= t^2+t^{4}+t^{8}+2t^{10}+2t^{12}+t^{14}+t^{16}+2t^{18}+2t^{20}+t^{22}+t^{26}+t^{28}, \\ \widetilde{\mathfrak {d}}_{6,8}(t)&= t^3+t^{9}+t^{11}+t^{13}+t^{17}+t^{19}+t^{21}+t^{27}, \\ \widetilde{\mathfrak {d}}_{7,7}(t)&= t^1+t^{3}+t^{9}+2t^{11}+t^{13}+t^{17}+2t^{19}+t^{21}+t^{27}+t^{29}, \\ \widetilde{\mathfrak {d}}_{7,8}(t)&= t^2+t^{10}+t^{12}+t^{18}+t^{20}+t^{28}, \\ \widetilde{\mathfrak {d}}_{8,8}(t)&= t^1+t^{11}+t^{19}+t^{29} \qquad \qquad \quad \text {and} \qquad \qquad \quad \widetilde{\mathfrak {d}}_{i,j}(t) = \widetilde{\mathfrak {d}}_{j,i}(t). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashiwara, M., Oh, Sj. The (qt)-Cartan matrix specialized at \(q=1\) and its applications. Math. Z. 303, 42 (2023). https://doi.org/10.1007/s00209-022-03195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-022-03195-1

Keywords

Mathematics Subject Classification

Navigation