Skip to main content
Log in

On CM masses over global function fields

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study the masses over CM points on Drinfeld–Stuhler modular curves and definite Shimura curves over global function fields. After connecting the CM masses with the modified Hurwitz class numbers, we show that the generating function of these masses is a particular metaplectic theta series. Applying the Poisson summation formula, we are able to describe explicitly the meromorphic continuation of the Mellin transform of the generating theta series. This enables us to derive not only a Gauss-type mean value formula of the average masses in question, but also provides “new” class number relations in the positive characteristic world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrade, J., Jung, H.: Mean value of the class number in function fields revisited. Monatshefte für Mathematik 187, 577–602 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bae, S., Jung, H.: Average values of L-functions in even characteristic. J. Number Theory 186, 269–303 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruinier, J.H., Yang, T.: Faltings heights of CM cycles and derivatives of \(L\)-functions. Inventiones Mathematicae 177, 631–681 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chamizo, F., Iwaniec, H.: On the Gauss mean-value formula for class number. Nagoya Math. J. 151, 199–208 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chuang, C.-Y., Wei, F.-T.: Waldspurger formula over function fields. Trans. Am. Math. Soc. 371, 173–198 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chuang, C.-Y., Lee, T.-F., Wei, F.-T., Yu, J.: 1. Brandt Matrices and Theta Series Over Function Fields, Memoirs of the American Mathematical Society 237. American Mathematical Society, Providence, RI (2015)

    Google Scholar 

  7. Chuang, C.-Y., Wei, F.-T., Yu, J.: On central critical values of Rankin-type \(L\)-functions over global function fields. Proc. Lond. Math. Soc. (3) 114, 333–373 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Datskovsky, B.: A mean-value theorem for class numbers of quadratic extensions, A tribute to Emil Grosswald: number theory and related analysis. Contemp. Math. 143, 179–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ. 14, 197–272 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eichler, M.: Über die Idealklassenzahl total definiter Quaternionenalgebren. Math. Z. 43, 102–109 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fisher, B., Friedberg, S.: Double Dirichlet series over function fields. Compositio Mathematica 140(3), 613–630 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Funke, J.: Heegner divisors and nonholomorphic modular forms. Compositio Mathematica 133, 289–321 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gekeler, E.-U., Reversat, M.: Jacobians of Drinfeld modular curves. J. für die reine und angewandte Mathematik 476, 27–93 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Gelbart, S.S.: Weil’s Representation and the Spectrum of the Metaplectic Group. Lecture Notes in Mathematics, vol. 530. Springer-Verlag, Berlin-New York (1976)

    Book  MATH  Google Scholar 

  15. Goldfeld, D., Hoffstein, J.: Eisenstein series of \(\frac{1}{2}\)-integral weight and the mean value of real Dirichlet \(L\)-series. Invent. Math. 80, 185–208 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gross, B.H.: Heights and the special values of \(L\)-series. Canadian Mathematical Society Conference Proceedings 7, 115–187 (1987)

    MathSciNet  Google Scholar 

  17. Hoffstein, J., Rosen, M.: Average values of \(L\)-series in function fields. J. Reine Angew. Math. 426, 117–150 (1992)

    MathSciNet  MATH  Google Scholar 

  18. Howard, B., Yang, T.: Intersections of Hirzebruch-Zagier divisors and CM cycles, Lecture Notes in Mathematics, 2041 (2012)

  19. Kubota, T.: On Automorphic Functions and the Reciprocity Law in a Number Field, Lectures in Mathematics 21. Kyoto University, Tokyo (1969)

    MATH  Google Scholar 

  20. Kudla, S.S., Rapoport, M., Yang, T.: Modular forms and special cycles on Shimura curves, Annals of Mathematics Studies, 161, (2006)

  21. Kudla, S.S., Millson, J.J.: The theta correspondence and harmonic forms. I. Mathematische Annalen 274, 353–378 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kudla, S.S., Millson, J.J.: The theta correspondence and harmonic forms. II. Mathematische Annalen 277, 267–317 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Laumon, G., Rapoport, M., Stuhler, U.: \({\mathscr {D}}\)-elliptic sheaves and the Langlands correspondence. Invent. Math. 113, 217–338 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lipschitz, R.: Sitzungsber, Akad. Berlin (1865) 174-185

  25. Mertens, F.: Über einige asymptotische Gesetze der Zahlentheorie. J. Reine Angew. Math. 77, 289–338 (1874)

    MathSciNet  MATH  Google Scholar 

  26. Neukirch, J.: Algebraic Number Theory, Grundlehren der mathematischen Wissenschaften 322. Springer-Verlag, Berlin Heidelberg (1999)

    Google Scholar 

  27. Papikian, M.: Drinfeld-Stuhler modules, Res. Math. Sci. (2018) 5-40

  28. Rosen, M.: Number Theory in Function Fields, Graduate Texts in Mathematics 210. Springer, New York (2002)

    Book  Google Scholar 

  29. Shintani, T.: Zeta functions associated with the vector spaces of quadratic forms. J. Fac. Sci., University of Tokyo, Sec 1A 22, 25–65 (1975)

    MathSciNet  MATH  Google Scholar 

  30. Siegel, C.: The average measure of quadratic forms with given discriminant and signature. Annals of Mathematics 45(4), 667–685 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  31. Takhtadzjan, L.A., Vinagradov, A.I.: On analogue of the Vinagradov-Gauss formula. Sov. Math. Dokl. 22, 555–559 (1980)

    Google Scholar 

  32. Taniguchi, T.: A mean value theorem for orders of degree zero divisor class groups of quadratic extensions over a function field. J. Number Theory 109, 197–239 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ülkem, Ö.: Uniformization of generalized \({\cal{D}}\)-elliptic sheaves, Ph. D. thesis, Ruprecht-Karls-Universität Heidelberg

  34. Vignéra, M.-F.: Arithmétique des Algébres de Quaternions, Lecture Notes in Mathematics, vol. 800. Springer (1980)

    Book  Google Scholar 

  35. Vinagradov, I.M.: On the number of integer points in a sphere, Izv. Akad. Nauk SSSR Ser. Mat., 957-968, (1963)

  36. Voight, J.: Quaternion algebras, Graduate texts in mathematics, vol. 288. Springer (2021)

  37. Waldspurger, J.-L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures et Appl. 60, 375–484 (1981)

    MathSciNet  MATH  Google Scholar 

  38. Wei, F.-T.: On metaplectic forms over function fields. Math. Ann. 355, 235–258 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wei, F.-T., Yu, J.: Theta series and function field analogue of Gross formula. Documenta Mathematica 16, 723–765 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Weil, A.: Adeles and algebraic groups, Progress in Mathematics, vol. 23, Birkhäuser, Boston, Mass., (1982). With appendices by M. Demazure and Takashi Ono

  41. Weil, A.: Basic number theory, Classics in Mathematics (Springer, Berlin, 1995), Reprint of the 3rd edition, published in (1974)

  42. Weil, A.: Dirichlet Series and Automorphic Forms, Lecture notes in mathematics, vol. 189. Springer (1971)

  43. Weil, A.: Sur certains groupes d’opérateurs unitaires (French). Acta Math. 111, 143–211 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zagier, D.: Nombres de classes et formes modularies de poids 3/2. C. R. Acad. Sci. Paris (A) 281, 883–886 (1975)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is supported by the National Science and Technology Council (grant no. 109-2115-M-002-017-MY2). The second author is supported by the National Science and Technology Council (grant no. 109-2115-M-007-017-MY5) and the National Center for Theoretical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Tsun Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Local optimal embeddings

Here we recall the needed properties of local optimal embeddings from a quadratic order into a hereditary order of a quaternion algebra over a local field. Further details are referred to [34, Chapter 2, Sect. 3] and [6, Chapter 5, Sect. 1.1].

Let \((L,|\cdot |_L)\) be a non-archimedean local field, and \(O_L\) be the ring of integers in L. Given a separable quadratic algebra E over L and a quaternion algebra \({\mathcal {D}}\) over L together with a fixed embedding \(\iota : E\hookrightarrow {\mathcal {D}}\), it is known that every embedding from E into \({\mathcal {D}}\) must be conjugates of \(\iota \) by an element of \({\mathcal {D}}^\times \). Let \({\mathcal {O}}\) be an \(O_L\)-order in E and \(O_{\mathcal {D}}\) a maximal \(O_L\)-order in \({\mathcal {D}}\). Put

$$\begin{aligned} {\mathcal {E}}({\mathcal {O}},O_{\mathcal {D}}) := \{b \in {\mathcal {D}}^\times \mid b^{-1}Eb \cap O_{\mathcal {D}}= b^{-1} {\mathcal {O}}b \}. \end{aligned}$$

Here we identify E as a subalgebra of \({\mathcal {D}}\) via \(\iota \). For \(\alpha \in E\), \(b \in {\mathcal {E}}({\mathcal {O}},O_{\mathcal {D}})\), and \(\kappa \in O_{\mathcal {D}}^\times \), one has

$$\begin{aligned} \alpha \cdot b \cdot \kappa \in {\mathcal {E}}({\mathcal {O}},O_{\mathcal {D}}). \end{aligned}$$

Moreover, the following result holds (cf. [34, Chapter 2, Theorem 3.1 and 3.2]):

Lemma A.1

  1. (1)

    Let \(O_E\) be the maximal \(O_L\)-order in E. Then

    $$\begin{aligned} e(O_E,O_{\mathcal {D}}):= \#\left( E^\times \backslash {\mathcal {E}}(O_E,O_{\mathcal {D}})/O_{\mathcal {D}}^\times \right) = {\left\{ \begin{array}{ll} 2, &{} \text { if } {\mathcal {D}}\text { is division and } E/L \text { is inert;}\\ 0, &{} \text { if } {\mathcal {D}}\text { is division and } E/L \text { is split;}\\ 1, &{} \text { otherwise.} \end{array}\right. } \end{aligned}$$
  2. (2)

    If \({\mathcal {O}}\subsetneq O_E\), then

    $$\begin{aligned} e({\mathcal {O}},O_{\mathcal {D}}):= \#\left( E^\times \backslash {\mathcal {E}}({\mathcal {O}},O_{\mathcal {D}})/O_{\mathcal {D}}^\times \right) = {\left\{ \begin{array}{ll} 0, &{} \text { if } {\mathcal {D}}\text { is division;} \\ 1, &{} \text { otherwise.} \end{array}\right. } \end{aligned}$$

Suppose \({\mathcal {D}}\) is not division (i.e. \({\mathcal {D}}\cong {\text {Mat}}_2(L)\)). Let \(O_{\mathcal {D}}'\) be a hereditary \(O_L\)-order in \(O_{\mathcal {D}}\). Put

$$\begin{aligned} {\mathcal {E}}({\mathcal {O}},O_{\mathcal {D}}') := \{b \in {\mathcal {D}}^\times \mid b^{-1}Eb \cap O_{\mathcal {D}}' = b^{-1}{\mathcal {O}}b\}. \end{aligned}$$

Then for \(\alpha \in E\), \(b \in {\mathcal {E}}({\mathcal {O}},O_{\mathcal {D}}')\), and \(\kappa ' \in (O_{\mathcal {D}}')^\times \), one has

$$\begin{aligned} \alpha \cdot b \cdot \kappa ' \in {\mathcal {E}}({\mathcal {O}},O_{\mathcal {D}}'). \end{aligned}$$

Moreover (cf. [34, Chapter 2, Theorem 3.2]):

Lemma A.2

  1. (1)
    $$\begin{aligned} e(O_E,O_{\mathcal {D}}') := \#(E^\times \backslash {\mathcal {E}}(O_E,O_{\mathcal {D}}')/(O_{\mathcal {D}}')^\times ) = {\left\{ \begin{array}{ll} 0, &{} \text { if } E/L \text { is inert;}\\ 1, &{} \text { if } E/L \text { is ramified;}\\ 2, &{} \text { if } E/L \text { is split.} \end{array}\right. } \end{aligned}$$
  2. (2)

    If \({\mathcal {O}}\subsetneq O_E\), then

    $$\begin{aligned} e({\mathcal {O}},O_{\mathcal {D}}'):= \#(E^\times \backslash {\mathcal {E}}({\mathcal {O}},O_{\mathcal {D}}')/(O_{\mathcal {D}}')^\times ) = 2. \end{aligned}$$

Appendix B. Special local integrals

Given \(c \in {{\mathbb {Z}}}_{\ge 0}\), put \({\mathcal {O}}(c) := O_L + \pi _L^c O_E\), where \(\pi _L \in O_L\) is a uniformizer in L. For \(x \in E\backslash L\), we can find a unique \(c_x \in {{\mathbb {Z}}}_{\ge 0}\) so that \(O_L[x] = {\mathcal {O}}(c_x)\) if \(x \in O_E\); and put \(c_x := -1\) if \(x \notin O_E\). Let \({\mathcal {D}}^o\) be the space of pure quaternions in \({\mathcal {D}}\), i.e.

$$\begin{aligned} {\mathcal {D}}^o:= \{ b \in {\mathcal {D}}\mid {\text {Tr}}(b) = 0\}. \end{aligned}$$

Put \(O_{\mathcal {D}}^o := O_{\mathcal {D}}\cap {\mathcal {D}}^o\) and \(O_{{\mathcal {D}}}^{\prime , o} := O_{{\mathcal {D}}}'\cap {\mathcal {D}}^o\). We observe that:

Lemma B.1

Given \(x \in E \backslash L\) with \({\text {Tr}}(x) = 0\), one has

$$\begin{aligned} {\textbf{1}}_{O_{\mathcal {D}}^o}(b^{-1}xb) = \sum _{\ell = 0}^{c_x} {\textbf{1}}_{{\mathcal {E}}({\mathcal {O}}(\ell ),O_{\mathcal {D}})}(b), \end{aligned}$$

Moreover, if \({\mathcal {D}}\) is not division, then

$$\begin{aligned} {\textbf{1}}_{O_{\mathcal {D}}^{\prime ,o}}(b^{-1}xb) = \sum _{\ell = 0}^{c_x} {\textbf{1}}_{{\mathcal {E}}({\mathcal {O}}(\ell ),O_{\mathcal {D}}')}(b). \end{aligned}$$

Proof

Notice that \({\mathcal {E}}\left( {\mathcal {O}}(\ell ),\mathcal O_{{\mathcal {D}}}\right) \) and \({\mathcal {E}}\left( \mathcal O(\ell '),{\mathcal {O}}_{{\mathcal {D}}}\right) \) are disjoint if \(\ell \ne \ell '\). Thus for \(b \in {\mathcal {D}}^\times \) one has

$$\begin{aligned} \sum ^{c_x}_{\ell =0}{\textbf{1}}_{{\mathcal {E}}(\mathcal O(\ell ),{\mathcal {O}}_{{\mathcal {D}}})}(b)=0\ \text {or}\ 1. \end{aligned}$$

Suppose the value is 1, i.e. \(b\in {\mathcal {E}}(\mathcal O(\ell _0),{\mathcal {O}}_{{\mathcal {D}}})\) for some \(0\le \ell _0\le c_x\). Then

$$\begin{aligned} x\in {\mathcal {O}}[x]=\mathcal O(c_x)\subset {\mathcal {O}}(\ell _0)\subset E\cap b{\mathcal {O}}_{{\mathcal {D}}}b^{-1}\subset b{\mathcal {O}}_{{\mathcal {D}}}b^{-1}. \end{aligned}$$

Since \({\text {Tr}}(x)=0\), we get \(b^{-1}xb\in {\mathcal {O}}^\circ _{{\mathcal {D}}}\), i.e. \({\textbf{1}}_{{\mathcal {O}}^\circ _{{\mathcal {D}}}}(b^{-1}xb)=1\).

Conversely, let \(b\in {\mathcal {D}}^\times \) with \({\textbf{1}}_{{\mathcal {O}}^\circ _{{\mathcal {D}}}}(b^{-1}xb)=1\). Then \(x\in b{\mathcal {O}}^\circ _{{\mathcal {D}}}b^{-1}\), which implies \({\mathcal {O}}(c_x)\subset E\cap b{\mathcal {O}}_{{\mathcal {D}}}b^{-1}\). Thus there exists \(\ell _0\) with \(0\le \ell _0\le c_x\) such that

$$\begin{aligned} E\cap b{\mathcal {O}}_{{\mathcal {D}}}b^{-1}={\mathcal {O}}(\ell _0). \end{aligned}$$

which means that \(b\in {\mathcal {E}}({\mathcal {O}}(\ell _0),{\mathcal {O}}_{{\mathcal {D}}})\). Therefore

$$\begin{aligned} \sum ^{c_x}_{\ell =0}{\textbf{1}}_{{\mathcal {E}}({\mathcal {O}}(\ell ),{\mathcal {O}}_{{\mathcal {D}}})}(b)= {\textbf{1}}_{{\mathcal {E}}({\mathcal {O}}(\ell _0),{\mathcal {O}}_{{\mathcal {D}}})}(b)=1. \end{aligned}$$

\(\square \)

Suppose Haar measures of \({\mathcal {D}}^\times \) and \(E^\times \) are chosen, respectively. The above lemma leads to:

Corollary B.2

For \(x \in E\backslash L\) with \({\text {Tr}}(x) = 0\), one has

$$\begin{aligned} \int _{E^\times \backslash {\mathcal {D}}^\times } {\textbf{1}}_{O_{\mathcal {D}}^o}(b^{-1}x b) \,d^\times b \ =\ \frac{\text { vol}(O_{\mathcal {D}}^\times )}{\text { vol}(O_E^\times )} \cdot \sum _{\ell = 0}^{c_x}\#\left( \frac{O_E^\times }{{\mathcal {O}}(\ell )^\times }\right) \cdot e({\mathcal {O}}(\ell ),O_{\mathcal {D}}). \end{aligned}$$

Suppose \({\mathcal {D}}\) is not division, then

$$\begin{aligned} \int _{E^\times \backslash {\mathcal {D}}^\times } {\textbf{1}}_{O_{\mathcal {D}}^{\prime ,o}}(b^{-1}xb)\,d^\times b \ =\ \frac{\text { vol}((O_{\mathcal {D}}')^\times )}{\text { vol}(O_E^\times )} \cdot \sum _{\ell = 0}^{c_x}\#\left( \frac{O_E^\times }{{\mathcal {O}}(\ell )^\times }\right) \cdot e({\mathcal {O}}(\ell ),O_{\mathcal {D}}'). \end{aligned}$$

Proof

Given \(0\le \ell \le c_x\), one has

$$\begin{aligned} \text {vol}(E^{\times }\backslash {\mathcal {E}}({\mathcal {O}}(\ell ),{\mathcal {O}}_{{\mathcal {D}}}))&=\sum _{b\in E^{\times }\backslash {\mathcal {E}}({\mathcal {O}}(\ell ),{\mathcal {O}}_D)/{\mathcal {O}}^\times _{{\mathcal {D}}}} \frac{\text {vol}({\mathcal {O}}^\times _{{\mathcal {D}}})}{\text {vol}(E^\times \cap b{\mathcal {O}}^\times _{{\mathcal {D}}}b^{-1})}\\&=\frac{\text {vol}({\mathcal {O}}^\times _{{\mathcal {D}}})}{\text {vol}\left( {\mathcal {O}}^\times _E\right) }\cdot \#\left( \frac{{\mathcal {O}}^\times _E}{{\mathcal {O}}(\ell )^\times }\right) \cdot e\left( {\mathcal {O}}(\ell ),{\mathcal {O}}_{{\mathcal {D}}}\right) . \end{aligned}$$

Thus

$$\begin{aligned} \int _{E^\times \backslash {\mathcal {D}}^\times }{\textbf{1}}_{{\mathcal {O}}^\circ _{{\mathcal {D}}}}(b^{-1}xb)\,d^\times b&=\sum ^{c_x}_{\ell =0}\int _{E^\times \backslash {\mathcal {D}}^\times }{\textbf{1}}_{{\mathcal {E}}({\mathcal {O}}(\ell ),{\mathcal {O}}_{{\mathcal {D}}})}(b)\,d^\times b\\&=\frac{\text {vol}({\mathcal {O}}^\times _{{\mathcal {D}}})}{\text {vol}({\mathcal {O}}^\times _E)}\cdot \sum ^{c_x}_{\ell =0}\#\left( \frac{{\mathcal {O}}^\times _E}{{\mathcal {O}}(\ell )^\times }\right) \cdot e\left( {\mathcal {O}}(\ell ),{\mathcal {O}}_{{\mathcal {D}}}\right) . \end{aligned}$$

\(\square \)

Let \(q_L\) be the cardinality of the residue field of L. Since

$$\begin{aligned} \text {vol}((O_{\mathcal {D}}')^\times ) = \frac{1}{q_L+1}\cdot \text {vol}(O_{\mathcal {D}}^\times ), \end{aligned}$$

combining Lemmas A.1, A.2, and Corollary B.2 we obtain:

Corollary B.3

Set

$$\begin{aligned} \varphi := {\left\{ \begin{array}{ll} \displaystyle \frac{1}{2}\cdot {\textbf{1}}_{O_{\mathcal {D}}^o}, &{} \text { if } D \text { is division;}\\ {\textbf{1}}_{O_{\mathcal {D}}^o} - \displaystyle \frac{q_L+1}{2} {\textbf{1}}_{O_{\mathcal {D}}^{\prime ,o}}, &{} \text { otherwise.} \end{array}\right. } \end{aligned}$$

Then for \(x \in O_E\backslash O_L\) with \({\text {Tr}}(x) = 0\), one has that

$$\begin{aligned} \int _{E^\times \backslash {\mathcal {D}}^\times } \varphi (b^{-1}x b)\,d^\times b= & {} {\left\{ \begin{array}{ll} \displaystyle \frac{1}{e(E/L)} \cdot \frac{\text { vol}(O_{\mathcal {D}}^\times )}{\text { vol}(O_E^\times )}, &{}\text { if } E \text { is a field,} \\ 0, &{} \text {otherwise.} \end{array}\right. } \end{aligned}$$

Here e(E/L) is the ramification index of E/L.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, JW., Wei, FT. On CM masses over global function fields. Math. Z. 303, 29 (2023). https://doi.org/10.1007/s00209-022-03191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-022-03191-5

Keywords

Mathematics Subject Classification

Navigation