Skip to main content
Log in

Geometric description of C-vectors and real Lösungen

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We introduce real Lösungen as an analogue of real roots. For each mutation sequence of an arbitrary skew-symmetrizable matrix, we define a family of reflections along with associated vectors which are real Lösungen and a set of curves on a Riemann surface. The matrix consisting of these vectors is called L-matrix. We explain how the L-matrix naturally arises in connection with the C-matrix. Then we conjecture that the L-matrix depends (up to signs of row vectors) only on the seed, and that the curves can be drawn without self-intersections, providing a new combinatorial/geometric description of c-vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Some authors call them quasi-Cartan matrices. For example, see [3].

  2. Historically, when Killing investigated the structure of a finite dimensional simple Lie algebra L with Cartan subalgebra \({\mathfrak {h}}\), the roots of the characteristic polynomial \(\det ({\text {ad}} _{L}x-t)\), \(x \in {\mathfrak {h}}\), were called the roots [8].

  3. An alternative geometric model can be found in [12].

References

  1. Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras, Vol. 1, London Mathematical Society Student Texts, vol. 65. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  2. Barot, M., Marsh, R.J.: Reflection group presentations arising from cluster algebras. Trans. Am. Math. Soc. 367, 1945–1967 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barot, M., Rivera, D.: Generalized Serre relations for Lie algebras associated with positive unit forms. J. Pure Appl. Algebra 211(2), 360–373 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barot, M., Kussin, D., Lenzing, H.: The Lie algebra associated to a unit form. J. Algebra 296(1), 1–17 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baumeister, B., Dyer, M., Stump, C., Wegener, P.: A note on the transitive Hurwitz action on decompositions of parabolic Coxeter elements. Proc. Am. Math. Soc. Ser. B 1, 149–154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benkart, G., Zelmanov, E.: Lie algebras graded by finite root systems and intersection matrix algebras. Invent. Math. 126(1), 1–45 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berman, S., Moody, R.V.: Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy. Invent. Math. 108(2), 323–347 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourbaki, N.: Elements of the History of Mathematics. Springer, Berlin (1994)

    MATH  Google Scholar 

  9. Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations I: mutations. Selecta Math. 14(1), 59–119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations II: applications to cluster algebras. J. Am. Math. Soc. 23(3), 749–790 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Felikson, A., Tumarkin, P.: Coxeter groups and their quotients arising from cluster algebras. Int. Math. Res. Not. IMRN 2016(17), 5135–5186 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Felikson, A., Tumarkin, P.: Acyclic cluster algebras, reflections groups, and curves on a punctured disc. Adv. Math. 340, 855–882 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fomin, S., Zelevinsky, A.: Cluster algebras IV: coefficients. Compos. Math. 143, 112–164 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gross, M., Hacking, P., Keel, S., Kontsevich, M.: Canonical bases for cluster algebras. J. Am. Math. Soc. 31(2), 497–608 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gupta, M.: A formula for \(F\)-polynomials in terms of \(C\)-cectors and stabilization of \(F\)-polynomials, preprint. arXiv:1812.01910

  16. Hubery, A., Krause, H.: A categorification of non-crossing partitions. J. Eur. Math. Soc. 18(10), 2273–2313 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Igusa, K., Schiffler, R.: Exceptional sequences and clusters. J. Algebra 323(8), 2183–2202 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kac, V.G.: Infinite root systems, representations of graphs and invariant theory. Invent. Math. 56, 57–92 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kac, V.G.: Infinite Dimensional Lie Algebras. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  20. Lee, K.-H., Lee, K.: A correspondence between rigid modules over path algebras and simple curves on Riemann surfaces, to appear in Exp. Math. arXiv:1703.09113

  21. Nájera Chávez, N.: On the c-vectors of an acyclic cluster algebra. Int. Math. Res. Not. IMRN 6, 1590–1600 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nakanishi, T., Zelevinsky, A.: On tropical dualities in cluster algebras. Contemp. Math. 565, 217–226 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nicolai, H., Fischbacher, T.: Low level representations for \(E_{10}\) and \(E_{11}\). Contemp. Math. 343, 191–227 (2004)

    Article  MATH  Google Scholar 

  24. Plamondon, P.-G.: Cluster algebras via cluster categories with infinite-dimensional morphism spaces. Compos. Math. 147, 1921–1954 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ringel, C.M.: Tame Algebras and Integral Quadratic Forms. Lecture Notes in Mathematics, vol. 1099. Springer, Berlin (1984)

    MATH  Google Scholar 

  26. Saito, K., Yoshii, D.: Extended affine root system. IV. Simply-laced elliptic Lie algebras. Publ. Res. Inst. Math. Sci. 36(3), 385–421 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schofield, A.: General representations of quivers. Proc. Lond. Math. Soc. (3) 65(1), 46–64 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Seven, A.: Mutation classes of skew-symmetrizable \(3 \times 3\) matrices. Proc. Am. Math. Soc. 141, 1493–1504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Seven, A.: Cluster algebras and symmetric matrices. Proc. Am. Math. Soc. 143, 469–478 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Seven, A.: Reflection group relations arising from cluster algebras. Proc. Am. Math. Soc. 144, 4641–4650 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Seven, A.: Cluster algebras and symmetrizable matrices. Proc. Am. Math. Soc. 147, 2809–2814 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Slodowy, P.: Singularitäten, Kac-Moody Lie-Algebren, assoziierte Gruppen und Verallgemeinerungen. Universität Bonn, Habilitationsschrift (1984)

    Google Scholar 

  33. Slodowy, P.: Beyond Kac–Moody algebras and inside. Can. Math. Soc. Conf. Proc. 5, 361–371 (1986)

    MathSciNet  MATH  Google Scholar 

  34. Speyer, D., Thomas, H.: Acyclic cluster algebras revisited, Algebras, quivers and representations. In: Abel Symp. vol. 8. Springer, Heidelberg, pp. 275–298 (2013)

  35. Xia, L.-M., Hu, N.: A class of Lie algebras arising from intersection matrices. Front. Math. China 10(1), 185–198 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to Pavel Tumarkin, Ahmet Seven and anonymous referees for correspondences and comments, which substantially improved the exposition of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Hwan Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

K.-H. Lee: This work was partially supported by a grant from the Simons Foundation (#712100). K. Lee: This work was partially supported by NSF Grant DMS 2042786, the University of Alabama, and Korea Institute for Advanced Study. M. R. Mills: This material is based upon work supported by the National Science Foundation under Award no. 1803521 and Michigan State University.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KH., Lee, K. & Mills, M.R. Geometric description of C-vectors and real Lösungen. Math. Z. 303, 44 (2023). https://doi.org/10.1007/s00209-022-03180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-022-03180-8

Navigation