Skip to main content
Log in

Double phase problems with competing potentials: concentration and multiplication of ground states

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we establish concentration and multiplicity properties of ground state solutions to the following perturbed double phase problem with competing potentials:

$$\begin{aligned} \left\{ \begin{array}{ll} -\epsilon ^{p}\Delta _{p} u-\epsilon ^{q}\Delta _{q} u +V(x)(|u|^{p-2}u+|u|^{q-2}u)=K(x)f(u),&{} \quad \hbox {in}~\mathbb {R}^{N},\\ u\in W^{1,p}(\mathbb {R}^{N})\cap W^{1,q}(\mathbb {R}^{N}),\ u>0, &{} \quad \hbox {in}~\mathbb {R}^{N},\\ \end{array} \right. \end{aligned}$$

where \(1<p<q<N\), \(\Delta _{s}u=\hbox {div}(|\nabla u|^{s-2}\nabla u)\), with \(s\in \{p,q\}\), is the s-Laplacian operator, and \(\epsilon \) is a small positive parameter. We assume that the potentials V, K and the nonlinearity f are continuous but are not necessarily of class \(C^{1}\). Under some natural hypotheses, using topological and variational tools from Nehari manifold analysis and Ljusternik–Schnirelmann category theory, we study the existence of positive ground state solutions and the relation between the number of positive solutions and the topology of the set where V attains its global minimum and K attains its global maximum. Moreover, we determine two concrete sets related to the potentials V and K as the concentration positions and we describe the concentration of ground state solutions as \(\epsilon \rightarrow 0\). The asymptotic convergence and the exponential decay of positive solutions are also explored. Finally, we establish a sufficient condition for the non-existence of ground state solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces, Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)

    Google Scholar 

  2. Alves, C.O., da Silva, A.R.: Multiplicity and concentration behavior of solutions for a quasilinear problem involving \(N\)-functions via penalized method. Electron. J. Differ. Equ. 158, 1–24 (2016)

    Google Scholar 

  3. Alves, C.O., Figueiredo, G.M.: Multiplicity and concentration of positive solutions for a class of quasilinear problems. Adv. Nonlinear Stud. 11, 265–294 (2011)

    Article  MathSciNet  Google Scholar 

  4. Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on \({{\mathbb{R}}}^n\), Progress in Mathematics 240. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  5. Ambrosio, V., Rădulescu, V.D.: Fractional double-phase patterns: concentration and multiplicity of solutions. J. Math. Pures Appl. 142, 101–145 (2020)

    Article  MathSciNet  Google Scholar 

  6. Ambrosio, V., Repovš, D.: Multiplicity and concentration results for a \((p, q)\)-Laplacian problem in \({\mathbb{R}}^N\). Z. Angew. Math. Phys. 72, 33 (2021)

  7. Bahrouni, A., Rădulescu, V.D., Repovš, D.: Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves. Nonlinearity 32, 2481–2495 (2019)

    Article  MathSciNet  Google Scholar 

  8. Bartolo, R., Candela, A.M., Salvatore, A.: On a class of superlinear \((p, q)\)-Laplacian type equations on \({\mathbb{R}}^N\). J. Math. Anal. Appl. 438, 29–41 (2016)

  9. Benci, V., Cerami, G.: Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Calc. Var. Partial Differ. Equ. 2, 29–48 (1994)

    Article  MathSciNet  Google Scholar 

  10. Benci, V., d’Avenia, P., Fortunato, D., Pisani, L.: Solitonsin severalspace dimensions: Derrick’s problem and infinitely many solutions. Arch. Ration. Mech. Anal. 154, 297–324 (2000)

    Article  MathSciNet  Google Scholar 

  11. Bonheure, D., d’Avenia, P., Pomponio, A.: On the electrostatic Born–Infeld equation with extended charges. Commun. Math. Phys. 346, 877–906 (2016)

    Article  MathSciNet  Google Scholar 

  12. Cherfils, L., Il’yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with p &q-Laplacian. Commun. Pure Appl. Anal. 1, 1–14 (2004)

    MATH  Google Scholar 

  13. Cingolani, S., Lazzo, M.: Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J. Differ. Equ. 160, 118–138 (2000)

    Article  Google Scholar 

  14. del Pino, M., Felmer, P.L.: Local mountain pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  Google Scholar 

  15. del Pino, M., Felmer, P.L.: Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting. Indiana Univ. Math. J. 48, 883–898 (1999)

    MathSciNet  MATH  Google Scholar 

  16. del Pino, M., Kowalczyk, M., Wei, J.: Concentration on curves for nonlinear Schrödinger equations. Commun. Pure Appl. Math. 60(1), 113–146 (2007)

    Article  Google Scholar 

  17. Ding, Y.H., Liu, X.Y.: Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities. Manuscr. Math. 140, 51–82 (2013)

    Article  Google Scholar 

  18. Figueiredo, G.M.: Existence of positive solutions for a class of p &q elliptic problems with critical growth on \({\mathbb{R}}^N\). J. Math. Anal. Appl. 378, 507–518 (2011)

  19. Gasiński, L., Winkert, P.: Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold. J. Differ. Equ. 274, 1037–1066 (2021)

    Article  MathSciNet  Google Scholar 

  20. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    MATH  Google Scholar 

  21. He, C., Li, G.: The regularity of weak solutions to nonlinear scalar field elliptic equations containing p &q-Laplacians. Ann. Acad. Sci. Fenn. Math. 33, 337–371 (2006)

    MathSciNet  MATH  Google Scholar 

  22. He, C., Li, G.: The existence of a nontrivial solution to the p &q-Laplacian problem with nonlinearity asymptotic to \(u^{p-1}\) at infinity in \({\mathbb{R}}^N\). Nonlinear Anal. 68, 1100–1119 (2008)

  23. Li, Y., Nirenberg, L.: The Dirichlet problem for singularly perturbed elliptic equations. Commun. Pure Appl. Math. 51, 1445–1490 (1998)

    Article  MathSciNet  Google Scholar 

  24. Lions, P.-L.: The concentration compactness principle in the calculus of variations. The locally compact case. Part II. Ann. Inst. H. Poincaré, Anal. Non Linéaire 1, 223–283 (1984)

  25. Liu, W., Dai, G.: Existence and multiplicity results for double phase problem. J. Differ. Equ. 265, 4311–4334 (2018)

    Article  MathSciNet  Google Scholar 

  26. Mercuri, C., Willem, M.: A global compactness result for the \(p\)-Laplacian involving critical nonlinearities. Discrete Contin. Dyn. Syst. 2, 469–493 (2010)

    Article  MathSciNet  Google Scholar 

  27. Moser, J.: A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468 (1960)

    Article  MathSciNet  Google Scholar 

  28. Mugnai, D., Papageorgiou, N.S.: Wang’s multiplicity result for superlinear \((p, q)\)-equations without the Ambrosetti–Rabinowitz condition. Trans. Am. Math. Soc. 366, 4919–4937 (2014)

    Article  MathSciNet  Google Scholar 

  29. Ni, W.-M., Wei, J.: On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems. Commun. Pure Appl. Math. 48, 731–768 (1995)

    Article  MathSciNet  Google Scholar 

  30. Papageorgiou, N.S., Qin, D., Rădulescu, V.D.: Nonlinear eigenvalue problems for the \((p, q)\)-Laplacian. Bull. Sci. Math. 172, 103038 (2021)

    Article  MathSciNet  Google Scholar 

  31. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.: Existence and multiplicity of solutions for double-phase Robin problems. Bull. Lond. Math. Soc. 52, 546–560 (2020)

    Article  MathSciNet  Google Scholar 

  32. Papageorgiou, N.S., Zhang, Y.: Constant sign and nodal solutions for superlinear \((p, q)\)-equations with indefinite potential and a concave boundary term. Adv. Nonlinear Anal. 10, 76–101 (2021)

    Article  MathSciNet  Google Scholar 

  33. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  34. Szulkin, A., Weth, T.: The method of Nehari manifold. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 597–632. International Press, Boston (2010)

    MATH  Google Scholar 

  35. Tolksdorf, P.: Regularity for some general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)

    Article  Google Scholar 

  36. Trudinger, N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Pure Appl. Math. 20, 721–747 (1967)

    Article  MathSciNet  Google Scholar 

  37. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    Article  Google Scholar 

  38. Wang, J., An, T., Zhang, F.: Positive solutions for a class of quasilinear problems with critical growth in \(\mathbb{R}^{N}\). Proc. R. Soc. Edinb. Sect. A 145, 411–444 (2015)

    Article  Google Scholar 

  39. Wang, X., Zeng, B.: On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions. SIAM J. Math. Anal. 28, 633–655 (1997)

    Article  MathSciNet  Google Scholar 

  40. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser, Boston (1996)

    Google Scholar 

  41. Zhang, J., Zhang, W.: Semiclassical states for coupled nonlinear Schrödinger system with competing potentials. J. Geom. Anal. 32, Paper No. 114 (2022)

  42. Zhang, Y., Tang, X., Rădulescu, V.D.: Concentration of solutions for fractional double-phase problems: critical and supercritical cases. J. Differ. Equ. 302, 139–184 (2021)

    Article  MathSciNet  Google Scholar 

  43. Zhikov, V.V.: On Lavrentiev’s phenomenon. Russ. J. Math. Phys. 3, 249–269 (1995)

    MathSciNet  MATH  Google Scholar 

  44. Zhikov, V.V., Kozlov, S.M., Oleĭnik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)

    Google Scholar 

Download references

Acknowledgements

The research of Vicenţiu D. Rădulescu was supported by a grant of the Romanian Ministry of Research, Innovation and Digitization, CNCS/CCCDI-UEFISCDI, project number PCE 137/2021, within PNCDI III. The research of Jian Zhang and Wen Zhang was supported by the Natural Science Foundation of Hunan Province (2021JJ30189), the Key Project of Scientific Research Project of the Department of Education of Hunan Province (21A0387), Funding scheme for Young Backbone Teachers of universities in Hunan Province (Hunan Education Notification (2018) no. 574 and (2020) no. 43), and the China Scholarship Council (Nos. 201908430218, 201908430219) for visiting the University of Craiova (Romania). J. Zhang and W. Zhang would like to thank the China Scholarship Council and the Embassy of the People’s Republic of China in Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicenţiu D. Rădulescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, W. & Rădulescu, V.D. Double phase problems with competing potentials: concentration and multiplication of ground states. Math. Z. 301, 4037–4078 (2022). https://doi.org/10.1007/s00209-022-03052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-03052-1

Keywords

Mathematics Subject Classification

Navigation