Skip to main content
Log in

On the Electrostatic Born–Infeld Equation with Extended Charges

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we deal with the electrostatic Born–Infeld equation

$$\left\{\begin{array}{ll}-\operatorname{div} \left(\displaystyle\frac{\nabla\phi}{\sqrt{1-|\nabla \phi|^2}} \right)= \rho \quad{in} \mathbb{R}^N, \\ \displaystyle\lim_{|x|\to \infty} \phi(x)= 0,\end{array}\right. \quad \quad \quad \quad ({\mathcal{BI}})$$

where \({\rho}\) is an assigned extended charge density. We are interested in the existence and uniqueness of the potential \({\phi}\) and finiteness of the energy of the electrostatic field \({-\nabla \phi}\). We first relax the problem and treat it with the direct method of the Calculus of Variations for a broad class of charge densities. Assuming \({\rho}\) is radially distributed, we recover the weak formulation of \({({\mathcal{BI}})}\) and the regularity of the solution of the Poisson equation (under the same smoothness assumptions). In the case of a locally bounded charge, we also recover the weak formulation without assuming any symmetry. The solution is even classical if \({\rho}\) is smooth. Then we analyze the case where the density \({\rho}\) is a superposition of point charges and discuss the results in (Kiessling, Commun Math Phys 314:509–523, 2012). Other models are discussed, as for instance a system arising from the coupling of the nonlinear Klein–Gordon equation with the Born–Infeld theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti G., Ambrosio L., Cabré X.: On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property. Acta Appl. Math. 65, 9–33 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azzollini A.: Ground state solution for a problem with mean curvature operator in Minkowski space. J. Funct. Anal. 266, 2086–2095 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartnik R., Simon L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature. Commun. Math. Phys. 87, 131–152 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bonheure D., Derlet A., De Coster C.: Infinitely many radial solutions of a mean curvature equation in Lorentz–Minkowski space. Rend. Istit. Mat. Univ. Trieste 44, 259–284 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Born M.: Modified field equations with a finite radius of the electron. Nature 132, 282 (1933)

    Article  ADS  MATH  Google Scholar 

  6. Born M.: On the quantum theory of the electromagnetic field. Proc. R. Soc. Lond. Ser. A 143, 410–437 (1934)

    Article  ADS  MATH  Google Scholar 

  7. Born M., Infeld L.: Foundations of the new field theory. Nature 132, 1004 (1933)

    Article  ADS  MATH  Google Scholar 

  8. Born M., Infeld L.: Foundations of the new field theory. Proc. R. Soc. Lond. Ser. A 144, 425–451 (1934)

    Article  ADS  MATH  Google Scholar 

  9. Cheng S.-Y., Yau S.-T.: Maximal space-like hypersurfaces in the Lorentz–Minkowski spaces. Ann. Math. 104, 407–419 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. d’Avenia, P., Pisani, L.: Nonlinear Klein–Gordon equations coupled with Born–Infeld type equations. Electron. J. Differ. Equ. 26 (2002)

  11. Ecker K.: Area maximizing hypersurfaces in Minkowski space having an isolated singularity. Manuscr. Math. 56, 375–397 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ekeland I., Témam R.: Convex Analysis and Variational Problems. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  13. Feynman R.P., Leighton R.B., Sands M.: The Feynman Lectures on Physics, vol. 2. Addison-Wesley, London (1964)

    MATH  Google Scholar 

  14. Fonseca I., Leoni G.: Modern Methods in the Calculus of Variations: \({L^{p}}\) Spaces. Springer, New York (2007)

    MATH  Google Scholar 

  15. Fortunato D., Orsina L., Pisani L.: Born–Infeld type equations for electrostatic fields. J. Math. Phys. 43, 5698–5706 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Gibbons G.W.: Born–Infeld particles and Dirichlet p-branes. Nuclear Phys. B 514, 603–639 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kiessling M.K.-H.: On the quasi-linear elliptic PDE \({-\nabla \cdot (\nabla u/\sqrt{1-|\nabla u|^2}) =4\pi\sum_{k} a_k \delta_{s_k}}\) in physics and geometry. Commun. Math. Phys. 314, 509–523 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  18. Klyachin, A.A.: Solvability of the Dirichlet problem for the maximal surface equation with singularities in unbounded domains (Russian). Dokl. Akad. Nauk 342, 162–164 [English transl. in Dokl. Math. 51, 340–342 (1995)]

  19. Klyachin, A.A.: Description of a set of entire solutions with singularities of the equation of maximal surfaces (Russian). Mat. Sb. 194, 83–104 (2003) [English transl. in Sb. Math. 194, 1035–1054 (2003)]

  20. Klyachin, A.A., Miklyukov, V.M.: Existence of solutions with singularities for the maximal surface equation in Minkowski space (Russian). Mat. Sb. 184, 103–124 (1993) [English transl. in Russ. Acad. Sci. Sb. Math. 80, 87–104 (1995)]

  21. Lieb E.H., Loss M.: Analysis. American Mathematical Society, Providence (2001)

    Book  MATH  Google Scholar 

  22. Mawhin J.: Nonlinear boundary value problems involving the extrinsic mean curvature operator. Math. Bohem. 139, 299–313 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Mugnai D.: Coupled Klein–Gordon and Born–Infeld type equations: looking for solitary waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci 460, 1519–1527 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Pryce M.H.L.: On a uniqueness theorem. Math. Proc. Camb. Philos. Soc. 31, 625–628 (1935)

    Article  ADS  MATH  Google Scholar 

  25. Serra E., Tilli P.: Monotonicity constraints and supercritical Neumann problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 63–74 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Szulkin A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 77–109 (1986)

    MathSciNet  MATH  Google Scholar 

  27. Trudinger N.S.: Linear elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa (3) 27, 265–308 (1973)

    MathSciNet  MATH  Google Scholar 

  28. Yu Y.: Solitary waves for nonlinear Klein–Gordon equations coupled with Born–Infeld theory. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 351–376 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Wang, F.: Solitary waves for the coupled nonlinear Klein–Gordon and Born–Infeld type equations. Electron. J. Differ. Equ. 82 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Bonheure.

Additional information

Communicated by P. T. Chruściel

D. Bonheure is supported by INRIA, Team MEPHYSTO, MIS F.4508.14 (FNRS), PDR T.1110.14F (FNRS) and ARC AUWB-2012-12/17-ULB1- IAPAS. P. d’Avenia and A. Pomponio are supported by GNAMPA Project “Analisi variazionale di modelli fisici non lineari”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonheure, D., d’Avenia, P. & Pomponio, A. On the Electrostatic Born–Infeld Equation with Extended Charges. Commun. Math. Phys. 346, 877–906 (2016). https://doi.org/10.1007/s00220-016-2586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2586-y

Keywords

Navigation