Skip to main content
Log in

Weak Bruhat interval modules of the 0-Hecke algebra

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The purpose of this paper is to provide a unified method for dealing with various 0-Hecke modules constructed using tableaux so far. To do this, we assign a 0-Hecke module to each left weak Bruhat interval, called a weak Bruhat interval module. We prove that every indecomposable summand of the 0-Hecke modules categorifying dual immaculate quasisymmetric functions, extended Schur functions, quasisymmetric Schur functions, and Young row-strict quasisymmetric Schur functions is a weak Bruhat interval module. We further study embedding into the regular representation, induction product, restriction, and (anti-)involution twists of weak Bruhat interval modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Following the notation in [13], \(\sigma \; {\bullet } \;\sigma ' = \sigma \cdot \sigma '[m]\) and \(\rho \; \overline{\bullet } \;\rho ' = \rho [n] \cdot \rho '\). And, there is a typo in [13, Theorem 3.8], where \(\beta = \beta ''[k]\cdot \beta '\) should appear as \(\beta = \beta '[n-k] \cdot \beta ''\).

  2. In fact, in [14], the author considered the induction product and restriction of the simple and projective indecomposable modules over the 0-Hecke algebra of not only type A but also type B and D.

References

  1. Bardwell, J., Searles, D.: \(0\)-Hecke modules for Young row-strict quasisymmetric Schur functions. arXiv:2012.12568 [math.RT] (2020)

  2. Berg, C., Bergeron, N., Saliola, F., Serrano, L., Zabrocki, M.: Indecomposable modules for the dual immaculate basis of quasi-symmetric functions. Proc. Am. Math. Soc. 143(3), 991–1000 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bergeron, N., Li, H.: Algebraic structures on Grothendieck groups of a tower of algebras. J. Algebra 321(8), 2068–2084 (2009)

    Article  MathSciNet  Google Scholar 

  4. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Mathematics, vol. 231. Springer, New York (2005)

  5. Choi, S.-I., Kim, Y.-H., Nam, S.-Y., Oh, Y.-T.: Modules of the 0-Hecke algebra arising from standard permuted composition tableaux. J. Combin. Theory Ser. A 179, 105389, 34 (2021)

  6. Choi, S.-I., Kim, Y.-H., Nam, S.-Y., Oh,Y.-T.: The projective cover of tableau-cyclic indecomposable \({H}_n(0)\)-modules. arXiv:2008.06830 [math.RT] (2020)

  7. Deng, B., Yang, G.: Representation type of 0-Hecke algebras. Sci. Chin. Math. 54(3), 411–420 (2011)

    Article  MathSciNet  Google Scholar 

  8. Duchamp, G., Hivert, F., Thibon,J.-Y.: Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras. Internat. J. Algebra Comput. 12(5), 671–717 (2002)

  9. Duchamp, G., Krob, D., Leclerc, B., Thibon, J.-Y.: Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à \(q=0\). C. R. Acad. Sci. Paris Sér. I Math. 322(2), 107–112 (1996)

  10. Fayers, M.: \(0\)-Hecke algebras of finite Coxeter groups. J. Pure Appl. Algebra 199(1–3), 27–41 (2005)

    Article  MathSciNet  Google Scholar 

  11. Gessel, I.: Multipartite \({P}\)-partitions and inner products of skew schur functions. Contemp. Math. 34(289–301), 101 (1984)

    MathSciNet  MATH  Google Scholar 

  12. Hivert, F.: Hecke algebras, difference operators, and quasi-symmetric functions. Adv. Math. 155(2), 181–238 (2000)

    Article  MathSciNet  Google Scholar 

  13. Hivert, F., Novelli, J.-C., Thibon, J.-Y.: Yang-Baxter bases of \(0\)-Hecke algebras and representation theory of \(0\)-Ariki-Koike-Shoji algebras. Adv. Math. 205(2), 504–548 (2006)

    Article  MathSciNet  Google Scholar 

  14. Huang, J.: A tableau approach to the representation theory of \(0\)-Hecke algebras. Ann. Comb. 20(4), 831–868 (2016)

    Article  MathSciNet  Google Scholar 

  15. König, S.: The decomposition of \(0\)-Hecke modules associated to quasisymmetric Schur functions. Algebra Comb. 2(5), 735–751 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Krob, D., Thibon, J.-Y.: Noncommutative symmetric functions. V. A degenerate version of \(U_q(gl_N)\). Internat. J. Algebra Comput. 9(3–4), 405–430 (1999)

  17. Luoto, K., Mykytiuk, S., van Willigenburg, S.: An Introduction to Quasisymmetric Schur Functions. Springer Briefs in Mathematics, Springer, New York (2013)

    Book  Google Scholar 

  18. Mason, S., Niese, E.: Skew row-strict quasisymmetric Schur functions. J. Algebra Combin. 42(3), 763–791 (2015)

    Article  MathSciNet  Google Scholar 

  19. Mason, S., Remmel, J.: Row-strict quasisymmetric Schur functions. Ann. Comb. 18(1), 127–148 (2014)

    Article  MathSciNet  Google Scholar 

  20. Norton, P.: \(0\)-Hecke algebras. J. Aust. Math. Soc. Ser. A 27(3), 337–357 (1979)

    Article  Google Scholar 

  21. Searles, D.: Indecomposable \(0\)-Hecke modules for extended Schur functions. Proc. Am. Math. Soc. 148(5), 1933–1943 (2020)

    Article  MathSciNet  Google Scholar 

  22. Skowroński, A., Yamagata, K.: Frobenius Algebras. I. EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich (2011)

    Book  Google Scholar 

  23. Stanley, R.: Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999)

  24. Tewari, V., van Willigenburg, S.: Modules of the \(0\)-Hecke algebra and quasisymmetric Schur functions. Adv. Math. 285, 1025–1065 (2015)

  25. Tewari, V., van Willigenburg, S.: Quasisymmetric and noncommutative skew Pieri rules. Adv. Appl. Math. 100, 101–121 (2018)

    Article  MathSciNet  Google Scholar 

  26. Tewari, V., van Willigenburg, S.: Permuted composition tableaux, \(0\)-Hecke algebra and labeled binary trees. J. Combin. Theory Ser. A 161, 420–452 (2019)

Download references

Acknowledgements

The authors would like to thank Sarah Mason and Elizabeth Niese for helpful discussions on Remark 6. The authors also would like to thank Dominic Searles for helpful discussions on the 0-Hecke action on \(\varvec{R}^\sigma _\alpha \). The authors are grateful to the anonymous referee for careful readings of the manuscript and valuable advice

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Hun Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All authors were supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (NRF-2020R1F1A1A01071055). The second author was also supported by NRF Grant funded by the Korean Government (NRF-2019R1A2C4069647)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, WS., Kim, YH., Lee, SY. et al. Weak Bruhat interval modules of the 0-Hecke algebra. Math. Z. 301, 3755–3786 (2022). https://doi.org/10.1007/s00209-022-03025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-03025-4

Keywords

Mathematics Subject Classification

Navigation