Skip to main content
Log in

Counting points of bounded height in monoid orbits

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Given a set of endomorphisms on \(\mathbb {P}^N\), we establish an upper bound on the number of points of bounded height in the associated monoid orbits. Moreover, we give a more refined estimate with an associated lower bound when the monoid is free. Finally, we show that most sets of rational functions in one variable satisfy these more refined bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avanzi, R., Zannier, U.: The equation \(f(X)= f(Y)\) in rational functions \(X=X(t)\), \(Y=Y(t)\). Compos. Math. 139(3), 263–295 (2003)

    Article  MathSciNet  Google Scholar 

  2. Baragar, A.: Rational points on \(K3\) surfaces in \(\mathbb{P}^1\times \mathbb{P}^1\times \mathbb{P}^1\). Math. Ann. 305(3), 541–558 (1996)

    Article  MathSciNet  Google Scholar 

  3. Bell, J.P., Huang, K., Peng, W., Tucker, T.J.: A Tits alternative for rational functions. arXiv:2103.09994(preprint)

  4. Bilu, Y., Tichy, R.: The diophantine equation \(f(x)=g (y)\). Acta Arith. 95(3), 261–288 (2000)

    Article  MathSciNet  Google Scholar 

  5. Bombieri, E., Gubler, W.: Heights in Diophantine Geometry, New Math. Monographs, vol. 4. Cambridge University Press, Cambridge (2006)

  6. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  7. Cantat, S.: Sur les groupes de transformations birationnelles des surfaces. Ann. Math. (2) 174(1), 299–340 (2011)

  8. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

  9. Fried, M.: On a conjecture of Schur. Mich. Math. J. 17, 41–50 (1970)

    Article  MathSciNet  Google Scholar 

  10. Ghioca, D., Tucker, T.J., Zieve, M.E.: Linear relations between polynomial orbits. Duke Math. J. 161(7), 1379–1410 (2012)

    Article  MathSciNet  Google Scholar 

  11. Greenfield, G., Drucker, D.: On the discriminant of a trinomial. Linear Algebra Appl. 62, 105–112 (1984)

    Article  MathSciNet  Google Scholar 

  12. Healey, V., Hindes, W.: Stochastic canonical heights. J. Number Theory 201, 228–256 (2019)

    Article  MathSciNet  Google Scholar 

  13. Hindes, W.: Dynamical and arithmetic degrees for random iterations of maps on projective space. Math. Proc. Camb. Philos. Soc., pp. 1–17 (2021). https://doi.org/10.1017/S0305004120000250

  14. Hindes, W.: Finite orbit points for sets of quadratic polynomials. Int. J. Number Theory 15(8), 1693–1719 (2019)

    Article  MathSciNet  Google Scholar 

  15. Hindes, W.: Dynamical height growth: left, right, and total orbits. Pac. J. Math. (to appear)

  16. Jiang, Z., Zieve, M.: Functional equations in polynomials, REU project

  17. Kawaguchi, S.: Canonical heights for random iterations in certain varieties. Int. Math. Res. Not., Article ID rnm023 (2007)

  18. Kawaguchi, S., Silverman, J.H.: On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties. J. Reine Angew. Math. (Crelles J.) 713, 21–48 (2016)

  19. Lang, S.: Diophantine Geometry. Springer, Berlin (1982)

  20. Lang, S.: Fundamentals of Diophantine Geometry. Springer Science & Business Media, New York (2013)

  21. Levin, A.: Generalizations of Siegel’s and Picard’s theorems. Ann. Math. 170, 609–655 (2009)

    Article  MathSciNet  Google Scholar 

  22. Matsuzawa, Y.: On upper bounds of arithmetic degrees. Am. J. Math. 142(6), 1797–1820 (2020)

    Article  MathSciNet  Google Scholar 

  23. Mello, J.: The dynamical and arithmetical degrees for eigensystems of rational self-maps. Bull. Braz. Math. Soc. 51(2), 569–596 (2020)

    Article  MathSciNet  Google Scholar 

  24. Mueller, P.: Permutation groups with a cyclic two-orbits subgroup and monodromy groups of Laurent polynomials. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12(2), 369–398 (2013)

  25. Pakovich, F.: Algebraic curves \(P(x)-Q(y)=0\) and functional equations. Complex Var. Ellipt. Equ. 56(1–4), 199–213 (2011)

    Article  MathSciNet  Google Scholar 

  26. Schinzel, A.: Polynomials with Special Regard to Reducibility. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  27. Serre, J.-P.: Lectures on the Mordell–Weil theorem. Aspects of Mathematics, 3rd edn. Friedr. Vieweg & Sohn, Braunschweig (1997). Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, With a foreword by Brown and Serre

  28. Serre, J.-P.: Lectures on the Mordell–Weil Theorem, 2nd edn. Vieweg (1990)

  29. Silverman, J.H.: Arithmetic and dynamical degrees on abelian varieties. J. Thór. Nombres Bordeaux 29(1), 151–167 (2017)

    Article  MathSciNet  Google Scholar 

  30. Silverman, J.H.: The Arithmetic of Dynamical Systems, vol. 241. Springer GTM (2007)

  31. Silverman, J.H.: Rational points on \(K3\) surfaces: a new canonical height. Invent. Math. 105(1), 347–373 (1991)

    Article  MathSciNet  Google Scholar 

  32. Zagier, D.: On the number of Markoff numbers below a given bound. Math. Comput. 39(160), 709–723 (1982)

    Article  MathSciNet  Google Scholar 

  33. Zannier, U.: Integral points on curves \((f(x)-f(y))/(x-y)\)(forthcoming)

Download references

Acknowledgements

We thank Yuri Bilu, Andrew Bridy, Alexander Evetts, Joseph Silverman, and Umberto Zannier for discussions related to this paper. We also thank the authors of [16]; Lemma 3.2 in their paper inspired the proof of Theorem 5.1. Finally, we thank the anonymous referee for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wade Hindes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hindes, W. Counting points of bounded height in monoid orbits. Math. Z. 301, 3395–3416 (2022). https://doi.org/10.1007/s00209-022-03021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-03021-8

Mathematics Subject Classification

Navigation