Skip to main content
Log in

Dyadic decomposition of convex domains of finite type and applications

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we introduce a dyadic structure on convex domains of finite type via the so-called dyadic flow tents. This dyadic structure allows us to establish weighted norm estimates for the Bergman projection P on such domains with respect to Muckenhoupt weights. In particular, this result gives an alternative proof of the \(L^p\) boundedness of P. Moreover, using extrapolation, we are also able to derive weighted vector-valued estimates and weighted modular inequalities for the Bergman projection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson, T.C., Cruz-Uribe, D., Moen, K.: Logarithmic bump conditions for Calderón–Zygmund operators on spaces of homogeneous type. Publ. Mat. 59(1), 17–43 (2015)

    Article  MathSciNet  Google Scholar 

  2. Arcozzi, N., Rochberg, R., Sawyer, E.: Carleson Measures and Interpolating Sequences for Besov Spaces on Complex Balls, vol. 182(859), pp. vi+163. American Mathematical Society, Providence (2006)

  3. Balogh, Z.M., Bonk, M.: Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains. Comment. Math. Helv. 75(3), 504–533 (2000)

    Article  MathSciNet  Google Scholar 

  4. Catlin, D.: Subelliptic estimates for the \(\partial \)-Neumann problem on pseudoconvex domains. Ann. Math. 126, 131–191 (1987)

    Article  MathSciNet  Google Scholar 

  5. Catlin, D.: Estimates of invariant metrics on pseudoconvex domains of dimension two. Math. Z. 200, 429–466 (1989)

    Article  MathSciNet  Google Scholar 

  6. Conde-Alonso, J.M., Rey, G.: A pointwise estimate for positive dyadic shifts and some applications. Math. Ann. 365, 1111–1135 (2016)

    Article  MathSciNet  Google Scholar 

  7. Cruz-Uribe, D., Martell, J. M., Pérez, C.: Weights, Extrapolation and the Theory of Rubio de Francia (Operator Theory: Advances and Applications 215). Birkhäuser/Springer, Basel (2011)

  8. Diederich, K., Fornaess, J.E., Fischer, B.: Höder estimates on convex domains of finite type. Math. Z. 232, 43–61 (1999)

    Article  MathSciNet  Google Scholar 

  9. Ecker, K.: Regularity Theory for Mean Curvature Flow. Progress in Nonlinear Differential Equations and Their Applications, vol. 57. Birkhäuser, Boston (2004)

  10. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)

    MATH  Google Scholar 

  11. Goldman, R.: Curvature formulas for implicit curves and surfaces. Comput. Aid. Geom. Des. 22(7), 632–658 (2005)

    Article  MathSciNet  Google Scholar 

  12. Grafakos, L.: Classical Fourier Analysis, 3rd edn, Graduate Texts in Mathematics, vol. 249. Springer, New York (2014)

  13. Grafakos, L.: Modern Fourier Analysis, 3rd edn, Graduate Texts in Mathematics, vol. 250. Springer, New York (2014)

  14. Hefer, T.: Hölder and \(L^p\) estimates for \({\bar{\partial }}\) on convex domains of finite type depending on Catlin’s multitype. Math. Z. 242(2), 367–398 (2002)

  15. Hefer, T.: Extremal bases and Hölder estimates for \(\partial \) on convex domains of finite type. Mich. Math. J. 52, 573–602 (2004)

    Article  MathSciNet  Google Scholar 

  16. Hirsch, M.: Differential Topology. Springer, New York (1976)

    Book  Google Scholar 

  17. Huo, Z., Wagner, N.A., Wick, B.D.: Bekollé–Bonami estimates on some pseudoconvex domains. Bull. Sci. Math. 170, 102993 (2021)

  18. Hytönen, T.: The sharp weighted bound for general Calderón–Zygmund operators. Ann. Math. 175, 1473–1506 (2012)

    Article  MathSciNet  Google Scholar 

  19. Hytönen, T., Kairema, A.: Systems of dyadic cubes in a doubling metric space. Colloq. Math. 126(1), 1–33 (2012)

    Article  MathSciNet  Google Scholar 

  20. Jasiczak, M.: Carleson embedding theorem on convex finite type domains. J. Math. Anal. Appl. 362, 167–189 (2010)

    Article  MathSciNet  Google Scholar 

  21. Jost, J.: Riemannian Geometry and Geometric Analysis, 7th edn. Universitext, Springer, Cham (2017)

  22. Kohn, J.J.: Boundary behavior of \(\partial \) on weakly pseudoconvex manifolds of dimension two. J. Differ. Geom. 6, 523–542 (1972)

    Article  Google Scholar 

  23. Kohn, J.J.: Global regularity for \(\partial \) on weakly pseudoconvex manifolds. Trans. Am. Math. Soc. 181, 273–292 (1973)

    MATH  Google Scholar 

  24. Krantz, S.G., Parks, H.R.: Geometric Integration Theory. Birkhäuser, Boston (2008)

  25. Lacey, M.T.: An elementary proof of the \(A_2\) bound. Isr. J. Math. 217(1), 181–195 (2017)

    Article  Google Scholar 

  26. Lerner, A.K., Nazarov, F.: Intuitive dyadic calculus: the basics. Expos. Math. 37(3), 225–265 (2019)

    Article  MathSciNet  Google Scholar 

  27. Lerner, A.: A simple proof of the \(A_2\) conjecture. Int. Math. Res. Not. 14, 3159–3170 (2013)

    Article  Google Scholar 

  28. Lerner, A.: On an estimate of Calderón–Zygmund operators by dyadic positive operators. J. Anal. Math. 121, 141–161 (2013)

    Article  MathSciNet  Google Scholar 

  29. McNeal, J.: Estimates on the Bergman kernels of convex domains. Adv. Math. 109, 108–139 (1994)

    Article  MathSciNet  Google Scholar 

  30. McNeal, J.: The Bergman projection as a singular integral operator. J. Geom. Anal. 4, 91–104 (1994)

    Article  MathSciNet  Google Scholar 

  31. McNeal, J., Stein, E.M.: Mapping properties of the Bergman projection on convex domains of finite type. Duke Math. J. 73(1), 177–199 (1994)

    Article  MathSciNet  Google Scholar 

  32. Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields. I. Basic properties. Acta Math. 155(1–2), 103–147 (1985)

    Article  MathSciNet  Google Scholar 

  33. Nikolov, N., Pflug, P., Thomas, P.J.: On different extremal bases for \({\mathbb{C}}\)-convex domains. Proc. Am. Math. Soc. 141(9), 3223–3230 (2013)

    Article  MathSciNet  Google Scholar 

  34. Rahm, R., Tchoundja, E., Wick, B.: Weighted estimates for the Berezin transform and Bergman projection on the unit ball. Math. Z. 286(3–4), 1465–1478 (2017)

    Article  MathSciNet  Google Scholar 

  35. Stein, E.M., Street, B.: Multi-parameter singular Radon transforms III: real analytic surfaces. Adv. Math. 229(4), 2210–2238 (2012)

    Article  MathSciNet  Google Scholar 

  36. Stein, E.M., Street, B.: Multi-parameter singular Radon transforms II: the \(L^p\) theory. Adv. Math. 248, 736–783 (2013)

    Article  MathSciNet  Google Scholar 

  37. Stovall, B., Street, B.: Coordinates adapted to vector fields: canonical coordinates. Geom. Funct. Anal. 28(6), 1780–1862 (2018)

    Article  MathSciNet  Google Scholar 

  38. Street, B.: Multi-parameter Carnot–Carathéodory balls and the theorem of Frobenius. Rev. Mat. Iberoam. 27(2), 645–732 (2011)

    Article  MathSciNet  Google Scholar 

  39. Street, B.: Multi-parameter singular Radon transforms I: the \(L^2\) theory. J. Anal. Math. 116, 83–162 (2012)

    Article  MathSciNet  Google Scholar 

  40. Yu, J.-Y.: Multitypes of convex domains. Indiana Univ. Math. J. 41, 837–849 (1992)

    Article  MathSciNet  Google Scholar 

  41. Zimmer, A.M.: Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type. Math. Ann. 365, 1425–1498 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Brett Wick for insightful discussion and helpful comments which improved the current version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingyang Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, C., Hu, B. & Khan, I. Dyadic decomposition of convex domains of finite type and applications. Math. Z. 301, 1939–1962 (2022). https://doi.org/10.1007/s00209-022-02984-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-02984-y

Keywords

Mathematics Subject Classification

Navigation