Skip to main content
Log in

Coordinates Adapted to Vector Fields: Canonical Coordinates

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Given a finite collection of C1 vector fields on aC2 manifold which span the tangent space at every point, we consider the question of when there is locally a coordinate system in which these vector fields have a higher level of smoothness. For example, when is there a coordinate system in which the vector fields are smooth, or real analytic, or have Zygmund regularity of some finite order? We address this question in a quantitative way, which strengthens and generalizes previous works on the quantitative theory of sub-Riemannian (aka Carnot–Carathéodory) geometry due to Nagel, Stein, and Wainger, Tao and Wright, the second author, and others. Furthermore, we provide a diffeomorphism invariant version of these theories. This is the first part in a three part series of papers. In this paper, we study a particular coordinate system adapted to a collection of vector fields (sometimes called canonical coordinates) and present results related to the above questions which are not quite sharp; these results form the backbone of the series. The methods of this paper are based on techniques from ODEs. In the second paper, we use additional methods from PDEs to obtain the sharp results. In the third paper, we prove results concerning real analyticity and use methods from ODEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charpentier Ph., Dupain Y.: Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form. Publ. Mat. C 1 50(2), 413–446 (2006)

    Article  MathSciNet  Google Scholar 

  2. Charpentier Ph., Dupain Y.: Extremal bases, geometrically separated domains and applications. Algebra i Analiz 26(1), 196–269 (2014)

    MathSciNet  MATH  Google Scholar 

  3. C. Chevalley. Theory of Lie Groups. I. In: Princeton Mathematical Series, Vol. 8. Princeton University Press, Princeton (1946)

  4. E. Dlugie and A. Peterson. On uniform large-scale volume growth for the Carnot–Carathéodory metric on unbounded model hypersurfaces in \({\mathbb{C}^{2}}\). Involve (1)11 (2018), 103–118

    Article  MathSciNet  Google Scholar 

  5. Folland G.B., Stein. E.M.: Estimates for the \({\bar\partial_b}\) complex and analysis on the Heisenberg group. Comm. Pure Appl. Math. 27, 429–522 (1974)

    Article  MathSciNet  Google Scholar 

  6. Fefferman C., Sánchez-Calle A.: Fundamental solutions for second order subelliptic operators. Ann. of Math. (2) 124(2), 247–272 (1986)

    Article  MathSciNet  Google Scholar 

  7. Gressman P.: Scalar oscillatory integrals in smooth spaces of homogeneous type. Rev. Mat. Iberoam. 31(1), 215–244 (2015)

    Article  MathSciNet  Google Scholar 

  8. V. Guillemin. Lecture notes, http://math.mit.edu/~arita/18.101/, 2008, prepared by Ana Rita Pires, Accessed: 2017-05-02

  9. Izzo A.: C r convergence of Picard’s successive approximations. Proc. Amer. Math. Soc. 127(7), 2059–2063 (1999)

    Article  MathSciNet  Google Scholar 

  10. J. Lee. Introduction to smooth manifolds. In: Graduate Texts in Mathematics, Vol. 218. Springer, New York (2003)

  11. B. Malgrange. Sur l’intégrabilitédes structures presque–complexes. In: Symposia Mathematica, Vol. II (INDAM, Rome, 1968), Academic, London (1969),pp. 289–296

  12. Montanari A., Morbidelli. D.: Nonsmooth Hörmander vector fields and their control balls. Trans. Amer. Math. Soc. 364(5), 2339–2375 (2012)

    Article  MathSciNet  Google Scholar 

  13. Montanari A., Morbidelli D.: A Frobenius-type theorem for singular Lipschitz distributions. J. Math. Anal. Appl. 399(2), 692–700 (2013)

    Article  MathSciNet  Google Scholar 

  14. Montanari A., Morbidelli D.: Step-s involutive families of vector fields, their orbits and the Poincaré inequality. J. Math. Pures Appl. (9) 99(4), 375–394 (2013)

    Article  MathSciNet  Google Scholar 

  15. Nelson E.: Analytic vectors. Ann. of Math. 70(2), 572–615 (1959)

    Article  MathSciNet  Google Scholar 

  16. Newlander A., Nirenberg L.: Complex analytic coordinates in almost complex manifolds. Ann. of Math. 65(2), 391–404 (1957)

    Article  MathSciNet  Google Scholar 

  17. A. Nagel, J.-P. Rosay, E. M. Stein, and S. Wainger. Estimates for the Bergman and Szegő kernels in C 2. Ann. of Math. (2) (1)129 (1989), 113–149

    Article  MathSciNet  Google Scholar 

  18. A. Nagel and E. M. Stein. Differentiable control metrics and scaled bump functions. J. Differential Geom. (3)57 (2001), 465–492

    Article  MathSciNet  Google Scholar 

  19. Nagel A., Stein E.M., Wainger S.: Balls and metrics defined by vector fields. I. Basic properties. Acta Math. 155(1-2), 103–147 (1985)

    Article  MathSciNet  Google Scholar 

  20. A. Peterson. Carnot–Carathéodory metrics in unbounded subdomains of \({\mathbb{C}^{2}}\). Arch. Math. (Basel) (5)102 (2014), 437–447

    Article  MathSciNet  Google Scholar 

  21. Rampazzo F., Sussmann H.: Commutators of flow maps of nonsmooth vector fields. J. Differential Equations 232(1), 134–175 (2007)

    Article  MathSciNet  Google Scholar 

  22. Stein E.M., Street B.: Multi-parameter singular Radon transforms. Math. Res. Lett. 18(2), 257–277 (2011)

    Article  MathSciNet  Google Scholar 

  23. Stein E.M., Street B.: Multi-parameter singular Radon transforms III: Real analytic surfaces. Adv. Math. 229(4), 2210–2238 (2012)

    Article  MathSciNet  Google Scholar 

  24. Stein E.M., Street. B. B.: Multi-parameter singular Radon transforms II: The L p theory. Adv. Math. 248, 736–783 (2013)

    Article  MathSciNet  Google Scholar 

  25. Stefan P.: Accessible sets, orbits, and foliations with singularities. Proc. London Math. Soc. 29(3), 699–713 (1974)

    Article  MathSciNet  Google Scholar 

  26. Stein E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, Vol.43. Princeton University Press, 43 (1993) With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.

    Google Scholar 

  27. Stovall B.: Uniform L p-improving for weighted averages on curves. Anal. PDE 7(5), 1109–1136 (2014)

    Article  MathSciNet  Google Scholar 

  28. Street B.: Multi-parameter Carnot–Carathéodory balls and the theorem of Frobenius. Rev. Mat. Iberoam. 27(2), 645–732 (2011)

    Article  MathSciNet  Google Scholar 

  29. Street B.: Multi-parameter singular radon transforms I: the L 2 theory. J. Anal. Math. 116, 83–162 (2012)

    Article  MathSciNet  Google Scholar 

  30. B. Street. Multi-parameter singular integrals. In: Annals of Mathematics Studies, Vol. 189. Princeton University Press, Princeton (2014)

  31. Street B.: Sobolev spaces associated to singular and fractional Radon transforms. Rev. Mat. Iberoam. 33(2), 633–748 (2017)

    Article  MathSciNet  Google Scholar 

  32. B. Street. Coordinates Adapted to Vector Fields II: Sharp Results, preprint arXiv:1808.04159

  33. B. Street. Coordinates Adapted to Vector Fields III: Real Analyticity, preprint arXiv:1808.04635

  34. Sussmann H.: Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc. 180, 171–188 (1973)

    Article  MathSciNet  Google Scholar 

  35. Hans Triebel. Theory of function spaces. III. In: Monographs in Mathematics, Vol. 100. Birkhäuser, Basel (2006)

  36. Tao T., Wright J.: L p improving bounds for averages along curves. J. Amer. Math. Soc. 16(3), 605–638 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the referee whose detailed comments improved the exposition. Stovall was partially supported by National Science Foundation Grant No. 1600458. Street was partially supported by National Science Foundation Grant Nos. 1401671 and 1764265. This material is partially based upon work supported by the National Science Foundation under Grant No. 1440140, while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the spring semester of 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Street.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stovall, B., Street, B. Coordinates Adapted to Vector Fields: Canonical Coordinates. Geom. Funct. Anal. 28, 1780–1862 (2018). https://doi.org/10.1007/s00039-018-0469-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-018-0469-4

Mathematics Subject Classification

Navigation