Skip to main content
Log in

Naïve liftings of DG modules

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let n be a positive integer, and let A be a strongly commutative differential graded (DG) algebra over a commutative ring R. Assume that

  1. (a)

    \(B=A[X_1,\ldots ,X_n]\) is a polynomial extension of A, where \(X_1,\ldots ,X_n\) are variables of positive degrees; or

  2. (b)

    A is a divided power DG R-algebra and \(B=A \langle X_1,\ldots ,X_n \rangle \) is a free extension of A obtained by adjunction of variables \(X_1,\ldots ,X_n\) of positive degrees.

In this paper, we study naïve liftability of DG modules along the natural injection \(A\rightarrow B\) using the notions of diagonal ideals and homotopy limits. We prove that if N is a bounded below semifree DG B-module such that \({\text {Ext}}_B ^i (N, N)=0\) for all \(i\geqslant 1\), then N is naïvely liftable to A. This implies that N is a direct summand of a DG B-module that is liftable to A. Also, the relation between naïve liftability of DG modules and the Auslander-Reiten Conjecture has been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Some authors use the cohomological notation for DG algebras. In such a case, A is described as \(A = \bigoplus _{n \leqslant 0} A ^n\), where \(A^{n} = A_{-n}\) and A is called non-positively graded.

  2. \(\mathrm {Mon}\)” is chosen for “monomial.”

  3. Keller [19] calls these “DG modules that have property (P).”

  4. The definition of diagonal ideals originates in scheme theory. In fact, if \(A \rightarrow B\) is a homomorphism of commutative rings, then the kernel of the natural mapping \(B \otimes _AB \rightarrow B\) is the defining ideal of the diagonal set in the Cartesian product \({\text {Spec}}B \times _{{\text {Spec}}A} {\text {Spec}}B\).

  5. \(J^{[\ell ]}\) is just a notation for the \(\ell \)-th DG \(B^e\)-submodule of J in the sequence. It is not an \(\ell \)-th power of any kind.

  6. In case that \(A \rightarrow B\) is a homomorphism of commutative rings, B is projective over A, and \(J/J^2\) is projective over B, then B is smooth over A in the sense of scheme theory. In this case, \(J/J^2 \cong \Omega _{B/A}\) is the module of Kähler differentials.

References

  1. Araya, T., Yoshino, Y.: Remarks on a depth formula, a grade inequality and a conjecture of Auslander. Comm. Algebra 26(11), 3793–3806 (1998)

    Article  MathSciNet  Google Scholar 

  2. Auslander, M., Ding, S., Solberg, Ø.: Liftings and weak liftings of modules. J. Algebra 156, 273–397 (1993)

    Article  MathSciNet  Google Scholar 

  3. Auslander, M., Reiten, I.: On a generalized version of the Nakayama conjecture. Proc. Amer. Math. Soc. 52, 69–74 (1975)

    Article  MathSciNet  Google Scholar 

  4. Avramov, L.L.: Infinite free resolutions, Six lectures on commutative algebra (Bellaterra, 1996). Progr. Math., vol. 166, 1–118. Birkhäuser, Basel (1998)

  5. Avramov, L.L., Buchweitz, R.-O.: Support varieties and cohomology over complete intersections. Invent. Math. 142(2), 285–318 (2000)

    Article  MathSciNet  Google Scholar 

  6. Avramov, L.L., Buchweitz, R.-O., Şega, L.M.: Extensions of a dualizing complex by its ring: commutative versions of a conjecture of Tachikawa. J. Pure Appl. Algebra 201(1–3), 218–239 (2005)

    Article  MathSciNet  Google Scholar 

  7. Avramov, L.L., Foxby, H.-B., Halperin, S.: Differential graded homological algebra (in preparation)

  8. Avramov, L.L., Halperin, S.: Through the looking glass: a dictionary between rational homotopy theory and local algebra, Algebra, algebraic topology and their interactions (Stockholm, 1983), 1–27, Lecture Notes in Math., 1183, Springer, Berlin (1986)

  9. Avramov, L.L., Iyengar, S.B., Nasseh, S., Sather-Wagataff, S.: Homology over trivial extensions of commutative DG algebras. Comm. Algebra 47, 2341–2356 (2019)

    Article  MathSciNet  Google Scholar 

  10. Avramov, L.L., Iyengar, S.B., Nasseh, S., Sather-Wagstaff, S.: Persistence of homology over commutative noetherian rings. Preprint at arxiv:2005.10808 (2020)

  11. Bökstedt, M., Neeman, A.: Homotopy limits in triangulated categories. Compositio Math. 86(2), 209–234 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Christensen, L.W., Holm, H.: Algebras that satisfy Auslander’s condition on vanishing of cohomology. Math. Z. 265(1), 21–40 (2010)

    Article  MathSciNet  Google Scholar 

  13. Félix, Y., Halperin, S., Thomas, J.-C.: Rational homotopy theory, Graduate Texts in Mathematics, vol. 205. Springer-Verlag, New York (2001)

    Book  Google Scholar 

  14. Gulliksen, T.H., Levin, G.: Homology of local rings, Queen’s Paper in Pure and Applied Mathematics, No. 20, Queen’s University. Kingston, Ontario, Canada (1969)

  15. Huneke, C., Şega, L.M., Vraciu, A.N.: Vanishing of Ext and Tor over some Cohen-Macaulay local rings. Illinois J. Math. 48(1), 295–317 (2004)

    Article  MathSciNet  Google Scholar 

  16. Huneke, C., Jorgensen, D.A., Wiegand, R.: Vanishing theorems for complete intersections. J. Algebra 238(2), 684–702 (2001)

    Article  MathSciNet  Google Scholar 

  17. Jorgensen, D.A.: Finite projective dimension and the vanishing of \({\rm Ext}_R(M, M)\). Comm. Algebra 36(12), 4461–4471 (2008)

    Article  MathSciNet  Google Scholar 

  18. Jorgensen, D.A., Leuschke, G.J., Sather-Wagstaff, S.: Presentations of rings with non-trivial semidualizing modules. Collect. Math. 63(2), 165–180 (2012)

    Article  MathSciNet  Google Scholar 

  19. Keller, B.: Deriving DG categories. Ann. Sci. École Norm. Sup. (4) 27(1), 63–102 (1994)

    Article  MathSciNet  Google Scholar 

  20. Keller, B.: Derived categories and tilting, Handbook of tilting theory, 49–104, London Math. Soc. Lecture Note Ser., 332, Cambridge Univ. Press, Cambridge (2007)

  21. Kontsevich, M., Soibelman, Y.: Notes on \(A^{\infty }\)-algebras, \(A^{\infty }\)-categories and non-commutative geometry. Homological mirror symmetry, 153–219, Lecture Notes in Phys., 757, Springer, Berlin (2009)

  22. Nasseh, S., Ono, M., Yoshino, Y.: The theory of \(j\)-operators with application to (weak) liftings of DG modules. Preprint at arXiv:2011.15032 (2020)

  23. Nasseh, S., Sather-Wagstaff, S.: Liftings and Quasi-Liftings of DG modules. J. Algebra 373, 162–182 (2013)

    Article  MathSciNet  Google Scholar 

  24. Nasseh, S., Sather-Wagstaff, S.: Extension groups for DG modules. Comm. Algebra 45, 4466–4476 (2017)

    Article  MathSciNet  Google Scholar 

  25. Nasseh, S., Sather-Wagstaff, S.: Vanishing of Ext and Tor over fiber products. Proc. Amer. Math. Soc. 145(11), 4661–4674 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Nasseh, S., Takahashi, R.: Local rings with quasi-decomposable maximal ideal. Math. Proc. Cambridge Philos. Soc. 168(2), 305–322 (2020)

    Article  MathSciNet  Google Scholar 

  27. Nasseh, S., Yoshino, Y.: On Ext-indices of ring extensions. J. Pure Appl. Algebra 213(7), 1216–1223 (2009)

    Article  MathSciNet  Google Scholar 

  28. Nasseh, S., Yoshino, Y.: Weak liftings of DG modules. J. Algebra 502, 233–248 (2018)

    Article  MathSciNet  Google Scholar 

  29. Ono, M., Yoshino, Y.: A lifting problem for DG modules. J. Algebra 566, 342–360 (2021)

    Article  MathSciNet  Google Scholar 

  30. Şega, L.M.: Vanishing of cohomology over Gorenstein rings of small codimension. Proc. Amer. Math. Soc. 131(8), 2313–2323 (2003)

    Article  MathSciNet  Google Scholar 

  31. Şega, L.M.: Self-tests for freeness over commutative Artinian rings. J. Pure Appl. Algebra 215(6), 1263–1269 (2011)

    Article  MathSciNet  Google Scholar 

  32. Shaul, L.: Smooth flat maps over commutative DG-rings. Math. Z. (to appear)

  33. Tate, J.: Homology of Noetherian rings and local rings. Illinois J. Math. 1, 14–27 (1957)

    Article  MathSciNet  Google Scholar 

  34. Toën, B., Vezzosi, G.: Homotopical algebraic geometry. II. Geometric stacks and applications. Mem. Amer. Math. Soc. 193(902), x+224 pp (2008)

  35. Yekutieli, A.: Derived categories, Cambridge Studies in Advanced Mathematics, Series Number 183, Cambridge University Press (2019)

  36. Yoshino, Y.: The theory of L-complexes and weak liftings of complexes. J. Algebra 188(1), 144–183 (1997). (MR 98i:13024)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referee for reading the paper and for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Nasseh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yuji Yoshino was supported by JSPS Kakenhi Grant 19K03448.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasseh, S., Ono, M. & Yoshino, Y. Naïve liftings of DG modules. Math. Z. 301, 1191–1210 (2022). https://doi.org/10.1007/s00209-021-02951-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02951-z

Keywords

Mathematics Subject Classification

Navigation