Skip to main content
Log in

\(L^p\) theory for the square roots and square functions of elliptic operators having a BMO anti-symmetric part

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider the operator \(L=-\mathrm{div}(A\nabla )\), where A is an \(n\times n\) matrix of real coefficients and satisfies the ellipticity condition, with \(n\ge 2\). We assume that the coefficients of the symmetric part of A are in \(L^\infty ({\mathbb {R}}^n)\), and those of the anti-symmetric part of A only belong to the space \(BMO({\mathbb {R}}^n)\). We create a complete narrative of the \(L^p\) theory for the square root of L and show that it satisfies the \(L^p\) estimates \(\left\| {\sqrt{L}f}\right\| _{L^p}\lesssim \left\| {\nabla f}\right\| _{L^p}\) for \(1<p<\infty \), and \(\left\| {\nabla f}\right\| _{L^p}\lesssim \left\| {\sqrt{L}f}\right\| _{L^p}\) for \(1<p<2+\epsilon \) for some \(\epsilon >0\) depending on the ellipticity constant and the BMO semi-norm of the coefficients. Moreover, we prove the \(L^p\) estimates for some vertical square functions associated to \(e^{-tL}\). In another article of the authors, these results are used to establish the solvability of the Dirichlet problem for elliptic equation \(\mathrm{div}(A(x)\nabla u)=0\) in the upper half-space \((x,t)\in {\mathbb {R}}_+^{n+1}\) with the boundary data in \(L^p({\mathbb {R}}^n,dx)\) for some \(p\in (1,\infty )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auscher, P.: On necessary and sufficient conditions for \(L^p\)-estimates of Riesz transforms associated to elliptic operators on \(R^n\) and related estimates. American Mathematical Soc. (2007)

  2. Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, P.: The solution of the Kato square root problem for second order elliptic operators on \({\mathbb{R}}^n\). Ann. Math. 156(2), 633–654 (2002)

    Article  MathSciNet  Google Scholar 

  3. Auscher, P., Tchamitchian, P.: Square root problem for divergence operators and related topics. No. 249 in Astérisque. Société mathématique de France (1998). http://www.numdam.org/item/AST_1998__249__R1_0

  4. Dong, H., Kim, S.: Fundamental solutions for second-order parabolic systems with drift terms. Proc. Am. Math. Soc. 146(7), 3019–3029 (2018)

    Article  MathSciNet  Google Scholar 

  5. Escauriaza, L., Hofmann, S.: Kato square root problem with unbounded leading coefficients. Proc. Am. Math. Soc. 146(12), 5295–5310 (2018)

    Article  MathSciNet  Google Scholar 

  6. Evans, L.C.: Partial Differential Equations, vol. 19. American Mathematical Society, New York (1998)

    MATH  Google Scholar 

  7. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, vol. 105. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  8. Hofmann, S., Kenig, C., Mayboroda, S., Pipher, J.: Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators. J. Am. Math. Soc. 28(2), 483–529 (2015)

    Article  MathSciNet  Google Scholar 

  9. Hofmann, S., Lacey, M., McIntosh, A.: The solution of the Kato problem for divergence form elliptic operators with Gaussian heat kernel bounds. Ann. Math. 156, 623–631 (2002)

    Article  MathSciNet  Google Scholar 

  10. Hofmann, S., Li, L., Mayboroda, S., Pipher, J.: The Dirichlet problem for elliptic operators having a BMO anti-symmetric part. Math. Ann. (2021). https://doi.org/10.1007/s00208-021-02219-1

  11. Hofmann, S., McIntosh, A.: The solution of the Kato problem in two dimensions. Publicacions Matemàtiques pp. 143–160 (2002)

  12. Jerison, D.S., Kenig, C.E.: The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. 4(2), 203–207 (1981)

    Article  MathSciNet  Google Scholar 

  13. Kato, T.: Fractional powers of dissipative operators. J. Math. Soc. Jpn. 13(3), 246–274 (1961)

    Article  MathSciNet  Google Scholar 

  14. Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1966)

    Book  Google Scholar 

  15. Kato, T.: Perturbation Theory for Linear Operators, vol. 132, 2nd edn. Springer, New York (1976)

    MATH  Google Scholar 

  16. Kenig, C.E., Pipher, J.: The Neumann problem for elliptic equations with non-smooth coefficients. Invent. Math. 113(1), 447–509 (1993)

    Article  MathSciNet  Google Scholar 

  17. Li, L., Pipher, J.: Boundary behavior of solutions of elliptic operators in divergence form with a BMO anti-symmetric part. Commun. Partial Differ. Equ. 44(2), 156–204 (2019)

    Article  MathSciNet  Google Scholar 

  18. McIntosh, A.: On the comparability of \(A^{1/2}\) and \(A^{*1/2}\). Proc. Am. Math. Soc. 32(2), 430–434 (1972)

    MATH  Google Scholar 

  19. McIntosh, A., Yagi, A.: Operators of type \(\omega \) without a bounded \(H_{\infty }\) functional calculus. In: Miniconference on operators in analysis, pp. 159–179. Centre for Mathematics and its Applications, Mathematical Sciences Institute (1990)

  20. Ouhabaz, E.M.: Analysis of Heat Equations on Domains (LMS-31). Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  21. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44. Springer Applied Mathematical Sciences, New York (1983)

    Book  Google Scholar 

  22. Qian, Z., Xi, G.: Parabolic equations with singular divergence-free drift vector fields. J. Lond. Math. Soc. (2018)

  23. Seregin, G., Silvestre, L., Šverák, V., Zlatoš, A.: On divergence-free drifts. J. Differ. Equ. 252(1), 505–540 (2012)

    Article  MathSciNet  Google Scholar 

  24. Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59(3), 572–611 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linhan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S. Hofmann acknowledges support of the National Science Foundation (currently Grant Number DMS-1664047). S. Mayboroda is supported in part by the National Science Foundation Grants DMS 1344235, DMS 1839077 and Simons Foundation Grant 563916, SM.

Appendix

Appendix

We include some frequently used results in this appendix for reader’s convenience.

Lemma A.1

([7] Chapter V Proposition 1.1) Let Q be a cube in \({\mathbb {R}}^n\). Let \(g\in L^q(Q)\), \(q>1\), and \(f\in L^s(Q)\), \(s>q\), be two nonnegative functions. Suppose

$$\begin{aligned} \fint _{Q_R(x_0)}g^qdx\le b\left( \fint _{Q_{2R}(x_0)}gdx\right) ^q+\fint _{Q_{2R}(x_0)}f^qdx+\theta \fint _{Q_{2R}(x_0)}g^qdx \end{aligned}$$

for each \(x_0\in Q\) and each \(R<\min \left\{ \frac{1}{2}{{\,\mathrm{dist}\,}}(x_0,\partial Q),R_0\right\} \), where \(R_0\), b, \(\theta \) are constants with \(b>1\), \(R_0>0\), \(0\le \theta <1\). Then \(g\in L_{{{\,\mathrm{loc\ }\,}}}^p(Q)\) for \(p\in [q,q+\epsilon )\) and

$$\begin{aligned} \left( \fint _{Q_R}g^pdx\right) ^{1/p}\le c\Bigg \{\left( \fint _{Q_{2R}}g^qdx\right) ^{1/q}+\left( \fint _{Q_{2R}}f^pdx\right) ^{1/p}\Bigg \} \end{aligned}$$

for \(Q_{2R}\subset Q\), \(R<R_0\), where c and \(\epsilon \) are positive constants depending only on b, \(\theta \), q, n (and s).

Lemma A.2

Suppose \(u,v\in L^2\left( (0,T),W^{1,2}({\mathbb {R}}^n)\right) \) with \(\partial _tu, \partial _tv \in L^2\left( (0,T),\widetilde{W}^{-1,2}({\mathbb {R}}^n)\right) \). Then

  1. (i)

    \(u\in C\left( [0,T], L^2({\mathbb {R}}^n)\right) \);

  2. (ii)

    The mapping \(t\mapsto \left\| u(\cdot ,t)\right\| _{L^2({\mathbb {R}}^n)}\) is absolutely continuous, with

    $$\begin{aligned} \frac{d}{dt}\left\| u(\cdot ,t)\right\| _{L^2({\mathbb {R}}^n)}^2=2\Re \langle \partial _tu(\cdot ,t),u(\cdot ,t)\rangle _{{\widetilde{W}}^{-1,2},W^{1,2}} \quad \text {for a.e. }t\in [0,T]. \end{aligned}$$

    As a consequence,

    $$\begin{aligned} \frac{d}{dt}\left( u(\cdot ,t),v(\cdot ,t)\right) _{L^2({\mathbb {R}}^n)}=\langle \partial _tu(\cdot ,t),v(\cdot ,t)\rangle _{{\widetilde{W}}^{-1,2},W^{1,2}}+\overline{\langle {\partial _tv(\cdot ,t),u(\cdot ,t)\rangle }}_{\widetilde{W}^{-1,2},W^{1,2}}\quad \text {a.e.}. \end{aligned}$$

For its proof see e.g. [6] Section 5.9.2 Theorem 3.

Lemma A.3

([15] Chapter V, Theorem 3.35) For any bounded linear operator B on \(L^2\), if \(BL=LB\) in D(L), then \(L^{1/2}B=BL^{1/2}\) in \(D(L^{1/2})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, S., Li, L., Mayboroda, S. et al. \(L^p\) theory for the square roots and square functions of elliptic operators having a BMO anti-symmetric part. Math. Z. 301, 935–976 (2022). https://doi.org/10.1007/s00209-021-02938-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02938-w

Keywords

Mathematics Subject Classification

Navigation