Skip to main content
Log in

Abelian subcategories of triangulated categories induced by simple minded systems

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

If k is a field, A a finite dimensional k-algebra, then the simple A-modules form a simple minded collection in the derived category \(\mathscr {D}^{ {\text {b}}}( {\text {mod}}\,A )\). Their extension closure is \({\text {mod}}\,A\); in particular, it is abelian. This situation is emulated by a general simple minded collection \(\mathscr {S}\) in a suitable triangulated category \(\mathscr {C}\). In particular, the extension closure \(\langle \mathscr {S}\rangle \) is abelian, and there is a tilting theory for such abelian subcategories of \(\mathscr {C}\). These statements follow from \(\langle \mathscr {S}\rangle \) being the heart of a bounded t-structure. It is a defining characteristic of simple minded collections that their negative self extensions vanish in every degree. Relaxing this to vanishing in degrees \(\{ -w+1, \ldots , -1 \}\) where w is a positive integer leads to the rich, parallel notion of w-simple minded systems, which have recently been the subject of vigorous interest. If \(\mathscr {S}\) is a w-simple minded system for some \(w \geqslant 2\), then \(\langle \mathscr {S}\rangle \) is typically not the heart of a t-structure. Nevertheless, using different methods, we will prove that \(\langle \mathscr {S}\rangle \) is abelian and that there is a tilting theory for such abelian subcategories. Our theory is based on Quillen’s notion of exact categories, in particular a theorem by Dyer which provides exact subcategories of triangulated categories. The theory of simple minded systems can be viewed as “negative cluster tilting theory”. In particular, the result that \(\langle \mathscr {S}\rangle \) is an abelian subcategory is a negative counterpart to the result from (higher) positive cluster tilting theory that if \(\mathscr {T}\) is a cluster tilting subcategory, then \(( \mathscr {T}* \Sigma \mathscr {T})/[ \mathscr {T}]\) is an abelian quotient category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Al-Nofayee, S.: Simple objects in the heart of a t-structure. J. Pure Appl. Algebra 213, 54–59 (2009)

    Article  MathSciNet  Google Scholar 

  2. Auslander, M.: Representation dimension of Artin algebras. Queen Mary College Mathematics Notes, Queen Mary College, London, 1971. In: Selected works of Maurice Auslander, Vol. 1 (edited by Reiten, Smalø, and Solberg), Reprinted pp. 505–574. American Mathematical Society, Providence (1999)

  3. Auslander, M., Reiten, I., Smalø, S.: Representation Theory of Artin Algebras, vol. 36. Cambridge Stud. Adv. Math., Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  4. Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceaux Pervers, vol. 100. Astérisque (1982) (proceedings of the conference “Analysis and topology on singular spaces”, Vol. 1, Luminy, 1981)

  5. Buan, A.B., Marsh, R.J., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204, 572–618 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bühler, T.: Exact categories. Expo. Math. 28, 1–69 (2010)

    Article  MathSciNet  Google Scholar 

  7. Coelho Simões, R.: Hom-configurations and noncrossing partitions. J. Algebraic Combin. 35, 313–343 (2012)

    Article  MathSciNet  Google Scholar 

  8. Coelho Simões, R.: Hom-configurations in triangulated categories generated by spherical objects. J. Pure Appl. Algebra 219, 3322–3336 (2015)

    Article  MathSciNet  Google Scholar 

  9. Coelho Simões, R.: Mutations of simple-minded systems in Calabi-Yau categories generated by a spherical object. Forum Math. 29, 1065–1081 (2017)

    Article  MathSciNet  Google Scholar 

  10. Coelho Simões, R., Pauksztello, D.: Simple-minded systems and reduction for negative Calabi-Yau triangulated categories. Trans. Am. Math. Soc. 373, 2463–2498 (2020)

    Article  MathSciNet  Google Scholar 

  11. Coelho Simões, R., Pauksztello, D.: Torsion pairs in a triangulated category generated by a spherical object. J. Algebra 448, 1–47 (2016)

    Article  MathSciNet  Google Scholar 

  12. Coelho Simões, R., Pauksztello, D., Ploog, D.: Functorially finite hearts, simple-minded systems in negative cluster categories, and noncrossing partitions, preprint (2020). arXiv:2004.00604

  13. Dickson, S.E.: A torsion theory for abelian categories. Trans. Am. Math. Soc. 121, 223–235 (1966)

    Article  MathSciNet  Google Scholar 

  14. Dugas, A.: Tilting mutation of weakly symmetric algebras and stable equivalence, Algebr. Represent. Theory 17, 863–884 (2014)

    Article  MathSciNet  Google Scholar 

  15. Dugas, A.: Torsion pairs and simple-minded systems in triangulated categories. Appl. Categ. Struct. 23, 507–526 (2015)

    Article  MathSciNet  Google Scholar 

  16. Dyer, M.: Exact subcategories of triangulated categories, preprint. https://www3.nd.edu/dyer/papers/extri.pdf . Accessed 19 March 2021

  17. Fedele, F.: Auslander-Reiten \((d+2)\)-angles in subcategories and a \((d+2)\)-angulated generalisation of a theorem by Brüning. J. Pure Appl. Algebra 223, 3554–3580 (2019)

    Article  MathSciNet  Google Scholar 

  18. Happel, D., Reiten, I., Smalø, S.: Tilting in abelian categories and quasitilted algebras. Mem. Am. Math. Soc. 120, 575 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Holm, T., Jørgensen, P., Yang, D.: Sparseness of \(t\)-structures and negative Calabi-Yau dimension in triangulated categories generated by a spherical object. Bull. Lond. Math. Soc. 45, 120–130 (2013)

    Article  MathSciNet  Google Scholar 

  20. Iyama, O., Jin, H.: Positive Fuss–Catalan numbers and simple-minded systems in negative Calabi–Yau categories, preprint (2020). arXiv:2002.09952v2

  21. Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent. Math. 172, 117–168 (2008)

    Article  MathSciNet  Google Scholar 

  22. Jin, H.: Reductions of triangulated categories and simple-minded collections, preprint (2019). arXiv:1907.05114v2

  23. Jørgensen, P.: Auslander-Reiten triangles in subcategories. J. K-Theory 3, 583–601 (2009)

    Article  MathSciNet  Google Scholar 

  24. Keller, B.: Chain complexes and stable categories. Manuscr. Math. 67, 379–417 (1990)

    Article  MathSciNet  Google Scholar 

  25. Keller, B.: On triangulated orbit categories. Doc. Math. 10, 551–581 (2005)

    MathSciNet  MATH  Google Scholar 

  26. König, S., Liu, Y.: Simple-minded systems in stable module categories. Q. J. Math. Oxf. 63, 653–674 (2012)

    Article  MathSciNet  Google Scholar 

  27. König, S., Yang, D.: Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras. Doc. Math. 19, 403–438 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Krause, H.: Krull-Schmidt categories and projective covers. Expo. Math. 33, 535–549 (2015)

    Article  MathSciNet  Google Scholar 

  29. Linckelmann, M.: On abelian subcategories of triangulated categories, preprint (2020). arXiv:2008.03199v1

  30. Nakaoka, H., Palu, Y.: Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég. 60, 117–193 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Neeman, A.: Triangulated categories. Annals of Mathematics Studies, Vol. 148, Princeton University Press, Princeton (2001)

  32. Quillen, D.: Higher algebraic K-theory: I. Algebraic K-theory, I: Higher K-theories (proceedings of the conference held at the Seattle Research Center of the Battelle Memorial Institute, 28 August to 8 September 1972, edited by Bass), Lecture Notes in Math., Vol. 341, pp. 85–147. Springer-Verlag, Berlin-New York (1973)

  33. Rickard, J.: Equivalences of derived categories for symmetric algebras. J. Algebra 257, 460–481 (2002)

    Article  MathSciNet  Google Scholar 

  34. Ringel, C. M.: Appendix: Some remarks concerning tilting modules and tilted algebras. Origin. Relevance. Future. Handbook of tilting theory (edited by Angeleri-Hügel, Happel, and Krause), London Math. Soc. Lecture Note Ser., Vol. 332, pp. 413–472. Cambridge University Press, Cambridge (2007)

  35. Schnürer, O. M.: Simple-minded subcategories and t-structures, preprint (2013)

  36. Woolf, J.: Stability conditions, torsion theories and tilting. J. Lond. Math. Soc. (2) 82, 663–682 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The main item of Sect. 3 is a theorem by Dyer on exact subcategories of triangulated categories, see [16, p. 1] and Theorem 3.5. We are grateful to Professor Dyer for permitting the proof of Theorem 3.5 to appear in this paper. We thank the referee for several useful corrections and suggestions. We are grateful to Raquel Coelho Simões and David Pauksztello for patiently answering numerous questions and to Osamu Iyama and Haibo Jin for comments on an earlier version. This work was supported by a DNRF Chair from the Danish National Research Foundation (Grant DNRF156), by a Research Project 2 from the Independent Research Fund Denmark (Grant 1026-00050B), by the Aarhus University Research Foundation (Grant AUFF-F-2020-7-16), and by the Engineering and Physical Sciences Research Council (Grant EP/P016014/1). Thanks to Aleksandr and Sergei the Meerkats for years of inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jørgensen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jørgensen, P. Abelian subcategories of triangulated categories induced by simple minded systems. Math. Z. 301, 565–592 (2022). https://doi.org/10.1007/s00209-021-02913-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02913-5

Keywords

Mathematics Subject Classification

Navigation