Skip to main content
Log in

Sets of exact approximation order by complex rational numbers

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Given a non-increasing function \(\psi \), let \({{\,\mathrm{Exact}\,}}(\psi )\) be the set of complex numbers which are approximable by complex rational numbers to order \(\psi \) but to no better order. In this paper, we obtain the Hausdorff dimension and the packing dimension of \({{\,\mathrm{Exact}\,}}(\psi )\) when \(\psi (x)=o(x^{-2})\). Moreover, without the condition \(\psi (x)=o(x^{-2})\), we also prove that the Hausdorff dimension of \({{\,\mathrm{Exact}\,}}(\psi )\) is greater than \(2-\tau /(1-2\tau )\) when \(0<\tau =\limsup _{x\rightarrow +\infty }x^2\psi (x)\) is small enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. To obtain a specific value of the constant \(\tau _0\) requires some more elaborate calculations, and it seems impossible to find the exact value of \({{\,\mathrm{dim_H}\,}}{{\,\mathrm{Exact}\,}}(\psi )\) with our method under the condition of Theorem 1.3, even for small \(\tau \), so we will not pursue the quantification of \(\tau _0\) further.

References

  1. Beresnevich, V., Dickinson, D., Velani, S.: Sets of exact ‘logarithmic’ order in the theory of Diophantine approximation. Math. Ann. 321(2), 253–273 (2001)

    Article  MathSciNet  Google Scholar 

  2. Besicovitch, A.S.: Sets of fractional dimensions (IV): on rational approximation to real numbers. J. Lond. Math. Soc. 9(2), 126–131 (1934)

    Article  MathSciNet  Google Scholar 

  3. Brouwers, A.: Sums of nearest integer and complex continued fractions. Master’s thesis, Radboud University Nijmegen (2019)

  4. Bugeaud, Y.: Sets of exact approximation order by rational numbers. Math. Ann. 327(1), 171–190 (2003)

    Article  MathSciNet  Google Scholar 

  5. Bugeaud, Y.: Diophantine approximation and Cantor sets. Math. Ann. 341(3), 677–684 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bugeaud, Y.: Sets of exact approximation order by rational numbers. II. Unif. Distrib. Theory 3(2), 9–20 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Bugeaud, Y., Moreira, C.G.: Sets of exact approximation order by rational numbers III. Acta Arith. 146(2), 177–193 (2011)

    Article  MathSciNet  Google Scholar 

  8. Dani, S.G., Nogueira, A.: Continued fractions for complex numbers and values of binary quadratic forms. Trans. Am. Math. Soc. 366(7), 3553–3583 (2014)

    Article  MathSciNet  Google Scholar 

  9. Dickinson, H.: A note on the theorem of Jarník-Besicovitch. Glasgow Math. J. 39(2), 233–236 (1997)

    Article  MathSciNet  Google Scholar 

  10. Dodson, M.M.: Star bodies and Diophantine approximation. J. Lond. Math. Soc. (2) 44(1), 1–8 (1991)

    Article  MathSciNet  Google Scholar 

  11. Dodson, M.M.: Hausdorff dimension, lower order and Khintchine’s theorem in metric Diophantine approximation. J. Reine Angew. Math. 432, 69–76 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Ei, H., Ito, S., Nakada, H., Natsui, R.: On the construction of the natural extension of the Hurwitz complex continued fraction map. Monatsh. Math. 188(1), 37–86 (2019)

    Article  MathSciNet  Google Scholar 

  13. Falconer, K.: Techniques in fractal geometry. Wiley, Chichester (1997)

    MATH  Google Scholar 

  14. Fraser, R., Wheeler, R.: Fourier dimension estimates for sets of exact approximation order: the well-approximable case. arXiv:2102.02151 February (2021)

  15. German, O.N., Moshchevitin, N.G.: Linear forms of a given Diophantine type. J. Théor. Nombres Bordeaux 22(2), 383–396 (2010)

    Article  MathSciNet  Google Scholar 

  16. Robert, G.G.: Complex continued fractions: theoretical aspects of Hurwitz’s algorithm. PhD thesis, Aarhus University (2018)

  17. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 6th edn. Oxford University Press, Oxford (2008).. (Revised by D. R. Heath-Brown and J. H, Silverman, With a foreword by Andrew Wiles)

    MATH  Google Scholar 

  18. He, Y., Xiong, Y.: The difference between the Hurwitz continued fraction expansions of a complex number and its rational approximations. arXiv:2104.06562 April (2021)

  19. Hensley, D.: Continued fractions. World Scientific Publishing Co. Pte. Ltd, Hackensack (2006)

    Book  Google Scholar 

  20. Hiary, G., Vandehey, J.: Calculations of the invariant measure for Hurwitz continued fractions. Exp. Math. (2019). https://doi.org/10.1080/10586458.2019.1627255

    Article  Google Scholar 

  21. Hurwitz, A.: Über die Entwicklung complexer Grössen in Kettenbrüche. Acta Math. 11(1–4), 187–200 (1887)

    Article  MathSciNet  Google Scholar 

  22. Jarník, V.: Diophantischen approximationen und hausdorffsches mass. Mat. Sbornik 36, 371–382 (1929)

    MATH  Google Scholar 

  23. Jarník, V.: Über die simultanen diophantischen Approximationen. Math. Z. 33(1), 505–543 (1931)

    Article  MathSciNet  Google Scholar 

  24. Kim, D.H., Liao, L.: Dirichlet uniformly well-approximated numbers. Int. Math. Res. Not. 24, 7691–7732 (2019)

    Article  MathSciNet  Google Scholar 

  25. Lakein, R.B.: Approximation properties of some complex continued fractions. Monatsh. Math. 77, 396–403 (1973)

    Article  MathSciNet  Google Scholar 

  26. Moreira, Carlos Gustavo: Geometric properties of the Markov and Lagrange spectra. Ann. Math. 188(1), 145–170 (2018)

    Article  MathSciNet  Google Scholar 

  27. Wang, B., Wu, J.: A survey on the dimension theory in dynamical Diophantine approximation. In: Recent developments in fractals and related fields: trends in mathematics, pp. 261–294. Springer, Cham (2017)

    Chapter  Google Scholar 

  28. Zhang, Z.-L.: On sets of exact Diophantine approximation over the field of formal series. J. Math. Anal. Appl. 386(1), 378–386 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gerardo González Robert for pointing out that the reference [12] contains a non-quantitative version of Lemma 2.2. They are grateful to the anonymous referee for his/her suggestions that led to the improvement of the paper. This work is supported by National Natural Science Foundation of China (Grant no. 11871227, 11771153, 11471124), Guangdong Natural Science Foundation (Grant no. 2018B0303110005), Guangdong Basic and Applied Basic Research Foundation (Project No. 2021A1515010056), the Fundamental Research Funds for the Central Universities, SCUT (Grant No. 2020ZYGXZR041).

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Xiong, Y. Sets of exact approximation order by complex rational numbers. Math. Z. 301, 199–223 (2022). https://doi.org/10.1007/s00209-021-02906-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02906-4

Keywords

Mathematics Subject Classification

Navigation