Skip to main content
Log in

Deformations of Dolbeault cohomology classes

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we establish a deformation theory for Dolbeault cohomology classes valued in holomorphic tensor bundles. We prove the extension equation which will play the role of Maurer–Cartan equation. Following the classical theory of Kodaira–Spencer–Kuranishi, we construct a canonical complete family of deformations by using the power series method. We also prove a simple relation between the existence of deformations and the varying of the dimensions of Dolbeault cohomology. The deformations of (pq)-forms is shown to be unobstructed under some mild conditions. By analyzing Nakamura’s example of complex parallelizable manifolds, we will see that the deformation theory developed in this work provides precise explanations to the jumping phenomenon of Dolbeault cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Though the base space B may be a singular complex space, such as the Kuranishi space, only deformations of complex manifolds will be considered. Thus every fiber of \(\pi \) are complex manifolds. This is our basic setting in this paper.

  2. It turns out that the effect of the former is equivalent to the obstructions of classes in \(H^{0,q-1}_{{\bar{\partial }}}(X,E)\), see Proposition 4.6.

  3. Even for canonical deformations, it is not clear how they depend on the choices of the Hermitian metric. For example, is it true that the equivalence class of canonical deformations of a given class is unique (thus independent of the Hermitian metrics chosen)?

  4. Here and throughout this paper, G will always denote the \({\bar{\partial }}\)-Green operator unless otherwise stated.

  5. To save space, we have omitted \(\cap A^{0,q}(X,E)\) which will be clear from the context.

  6. In fact, a more general result of this type holds, see [22, pp. 210].

  7. We have been informed by the anonymous referee that by using the structure theory of double complexes one can show \(\partial _{A,{\bar{\partial }}(\ker \partial )}^{p,q}=0\) holds for all \((p,q)\in {\mathbb {Z}}^2\) is equivalent to the \(\partial {\bar{\partial }}\)-lemma on X, see [30, 49, 52, 63] for more information.

References

  1. Alessandrini, L.: Weak forms of \(\partial {\bar{\partial }}\)-lemma on compact complex manifolds. arXiv:1909.07037

  2. Angella, D.: The cohomologies of the Iwasawa manifold and of its small deformations. J. Geom. Anal. 23(3), 1355–1378 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angella, D., Kasuya, H.: Cohomologies of deformations of solvmanifolds and closedness of some properties. North West Eur. J. Math. 3, 75–105 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Angella, D., Ugarte, L.: Locally conformal Hermitian metrics on complex non-Kähler manifolds. Mediterr. J. Math. 13(4), 2105–2145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Angella, D., Ugarte, L.: On small deformations of balanced manifolds. Differ. Geom. Appl. 54(part B), 464–474 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balaji, T.E.V.: An Introduction to Families. Deformations and Moduli. Universitätsdrucke Göttingen, Göttingen (2010)

    Book  MATH  Google Scholar 

  7. Bandiera, R., Manetti, M.: Algebraic models of local period maps and Yukawa algebras. Lett. Math. Phys. 108(9), 2055–2097 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, J., Paun, M.: On extension of pluricanonical forms defined on the central fiber of a kahler family. arXiv:2012.05063, (2020)

  9. Catanese, F.: A superficial working guide to deformations and moduli. In: Farkas, G., Morrison, I. (eds.) Handbook of Moduli, Advanced Lectures in Mathematics, vol. 24, pp. 161–215. International Press, Somerville (2013)

  10. Catanese, F.: Moduli of algebraic surfaces. In: Sernesi, E. (ed.) Theory of Moduli (Montecatini Terme. 1985), vol. 1337, pp. 1–83. Lecture Notes in Mathematics. Springer, Berlin (1988)

  11. Chan, K., Suen, Y.-H.: A Chern–Weil approach to deformations of pairs and its applications. Complex Manifolds 3(1), 16–40 (2014)

    Google Scholar 

  12. Chan, K., Suen, Y.-H.: On the jumping phenomenon of \(\dim _{{\mathbb{C}}}H^q( {\cal{X}}_t, {\cal{E}}_t)\). Asian J. Math. 23(4), 681–701 (2019)

    Article  MathSciNet  Google Scholar 

  13. Clemens, H.: Geometry of formal Kuranishi theory. Adv. Math. 198(1), 311–365 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Console, S., Fino, A.: Dolbeault cohomology of compact nilmanifolds. Transform. Groups 6(2), 111–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Demailly, J.P.: Bergman bundles and applications to the geometry of compact complex manifolds. arXiv:2003.04003 (2020)

  16. Demailly, J.P.: Complex analytic and differential geometry. https://www-fourier.ujf-grenoble.fr/demailly/manuscripts/agbook.pdf (2012)

  17. Eastwood, M.G., Singer, M.A.: The Fröhlicher spectral sequence on a twistor space. J. Differ. Geom. 38(3), 653–669 (1993)

    Article  MATH  Google Scholar 

  18. Fiorenza, D., Manetti, M.: L-infinity algebras, cartan homotopies and period maps. arXiv:math/0605297 (2006)

  19. Fiorenza, D., Manetti, M.: A period map for generalized deformations. J. Noncommut. Geom. 3(4), 579–597 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frölicher, A., Nijenhuis, A.: Theory of vector-valued differential forms: part I. Derivations in the graded ring of differential forms. Indag. Math. 59, 338–350 (1956)

    Article  MATH  Google Scholar 

  21. Fu, J., Yau, S.-T.: A note on small deformations of balanced manifolds. C. R. Math. Acad. Sci. Paris 349(13–14), 793–796 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grauert, H., Remmert, R.: Coherent Analytic Sheaves. Grundlehren der mathematischen Wissenschaften, vol. 265. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  23. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library Edition (1994)

  24. Griffiths, P.: The extension problem for compact submanifolds of complex manifolds i (The case of a trivial normal bundle). In: Aeppli, A., Calabi, E., Röhrl, R. (eds.) Proceedings of the Conference on Complex Analysis, pp. 113–142. Springer, Berlin (1965)

    Chapter  Google Scholar 

  25. Hamilton, R.: Deformation of complex structures on manifolds with boundary. I. The stable case. J. Differ. Geom. 12(1), 1–45 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, L.: On joint moduli spaces. Math. Ann. 302(1), 61–79 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huybrechts, D.: The tangent bundle of a Calabi–Yau manifold-deformations and restriction to rational curves. Commun. Math. Phys. 171(1), 139–158 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huybrechts, D.: Complex Geometry. An Introduction. Springer, Berlin (2005)

    MATH  Google Scholar 

  29. Iacono, D., Manetti, M.: On deformations of pairs (manifold, coherent sheaf). Can. J. Math. 71(5), 1209–1241 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Khovanov, M., Qi, Y.: A faithful braid group action on the stable category of tricomplexes. SIGMA Symmetry Integrability Geom. Methods Appl. 16(019), 32 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Klemola, T.: On the stability of the cohomology of complex structures. Trans. Am. Math. Soc. 157, 87–97 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kodaira, K.: Complex Manifolds and Deformation of Complex Structures. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  33. Kodaira, K., Spencer, D.C.: On deformations of complex analytic structures. I, II. Ann. Math. (2) 67, 328–466 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kodaira, K., Spencer, D.C.: On deformations of complex analytic structures. III. Stability theorems for complex structures. Ann. Math. (2) 71, 43–76 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kodaira, K., Nirenberg, L., Spencer, D.C.: On the existence of deformations of complex analytic structures. Ann. Math. 2(68), 450–459 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  37. Kollár, J.: Deformations of varieties of general type. arXiv:2101.10986 (2021)

  38. Kuranishi, M.: On the locally complete families of complex analytic structures. Ann. Math. (2) 75(3), 536–577 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kuranishi, M.: New proof for the existence of locally complete families of complex structures. In: Aeppli, A., Calabi, E., Röhrl, H. (eds.) Proceedings of the Conference on Complex Analysis, pp. 142–154. Springer, Berlin (1965)

    Chapter  Google Scholar 

  40. Liu, K., Sun, X., Yau, S.-T.: Recent development on the geometry of the Teichmüller and moduli spaces of Riemann surfaces. In: Ji, L., Wolpert, S.A., Yau S.T. (eds.) Geometry of Riemann Surfaces and their Moduli Spaces, volume XIV of Surveys in Differential Geometry, pp. 221–259 International Press, Somerville, MA (2009)

  41. Liu, K., Zhu, S.: Solving equations with Hodge theory. arXiv:1803.01272v1 (2018)

  42. Liu, K., Tu, J.: The deformation of pairs \((X, E)\) lifting from base family. Asian J. Math. 22(5), 841–862 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, K., Rao, S., Yang, X.: Quasi-isometry and deformations of Calabi–Yau manifolds. Invent. Math. 199(2), 423–453 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Manetti, M.: Lectures on deformations of complex manifolds (deformations from differential graded viewpoint). Rend. Mat. Appl. (7) 24(1), 1–183 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Michiel, H., Murray, G., (eds).: Deformation Theory of Algebras and Structures and Applications, Volume 247 of NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences. Kluwer Academic Publishers Group, Dordrecht, 1988. Papers from the NATO Advanced Study Institute held in Il Ciocco, June 1–14 (1986)

  46. Morrow, J., Kodaira, K.: Complex Manifolds. AMS Chelsea Publishing, Providence (2006).. (Reprint of the 1971 edition with errata)

    MATH  Google Scholar 

  47. Nakamura, I.: Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10(1), 85–112 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  48. Nakayama, N.: Zariski-decomposition and abundance. volume XIV of MSJ memoirs (2004)

  49. Popovici, D., Stelzig, J., Ugarte, L.: Higher-page Hodge theory of compact complex manifolds. arXiv:2001.02313 (2020)

  50. Popovici, D.: Deformation openness and closedness of various classes of compact complex manifolds; examples. Ann. Sc. Norm. Super. Pisa Cl. Sci. 13(2), 255–305 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Popovici, D.: Holomorphic deformations of balanced Calabi–Yau \(\partial {\bar{\partial }}\)-manifolds. Ann. Inst. Fourier (Grenoble) 69(2), 673–728 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  52. Popovici, D., Stelzig, J., Ugarte, L.: Higher-page Bott–Chern and Aeppli cohomologies and applications. J. Reine Angew. Math. 777, 157–194 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  53. Rao, S., Tsai, I-H.: Invariance of plurigenera and chow-type lemma. arXiv:2011.03306 (2020)

  54. Rao, S., Wan, X., Zhao, Q.: Power series proofs for local stabilities of Kähler and balanced structures with mild \(\partial {\bar{\partial }}\)-lemma. Nagoya Math. J (2021). https://doi.org/10.1017/nmj.2021.4

  55. Rao, S., Zhao, Q.: Several special complex structures and their deformation properties. J. Geom. Anal. 28(4), 2984–3047 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  56. Rao, S., Wan, X., Zhao, Q.: On local stabilities of \(p\)-Kähler structures. Compos. Math. 155(3), 455–483 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  57. Sakane, Y.: On compact complex parallelisable solvmanifolds. Osaka Math. J. 13(1), 187–212 (1976)

    MathSciNet  MATH  Google Scholar 

  58. Schlessinger, M., Stasheff, J.: Deformation theory and rational homotopy type. arXiv:1211.1647v1 [math.QA] (2012)

  59. Schweitzer, M.: Autour de la cohomologie de Bott–Chern. arXiv:0709.3528v1 [math.AG] (2007)

  60. Siu, Y.-T.: Some recent transcendental techniques in algebraic and complex geometry. In: Proceedings of the International Congress of Mathematicians, volume I, pp. 439–448. Higher Ed. Press, Beijing (2002)

  61. Siu, Y.-T.: Invariance of plurigenera. Invent. Math. 134(3), 661–673 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  62. Siu, Y.-T.: Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type. In: Bauer, I., Catanese, F., Peternell, T., Kawamata, Y., Siu, Y.-T. (eds.) Complex Geometry, pp. 223–277. Springer, Berlin (2002)

    Chapter  Google Scholar 

  63. Stelzig, J.: On the structure of double complexes. J. Lond. Math. Soc. (2) 104(2), 956–988 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  64. Sun, X.: Deformation of canonical metrics I. Asian J. Math. 16(1), 141–155 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  65. Todorov, A.N.: The Weil–Petersson geometry of the moduli space of SU(\(\ge 3\)) (Calabi–Yau) manifolds I. Commun. Math. Phys. 126(2), 325–346 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  66. Voisin, C.: Hodge Theory and Complex Algebraic Geometry. I, Volume 76 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2002).. (Translated from the French original by Leila Schneps)

    Google Scholar 

  67. Wavrik, J.: Deforming cohomology classes. Trans. Am. Math. Soc. 181, 341–350 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  68. Xia, W.: Derivations on almost complex manifolds. Proc. Am. Math. Soc. 147, 559–566 (2019) (Errata inarXiv:1809.07443v3)

  69. Xia, W.: Deformations of Dolbeault cohomology classes for Lie algebra with complex structures. Ann. Glob. Anal. Geom. 60(3), 709–734 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  70. Xia, W.: On the deformed Bott–Chern cohomology. J. Geom. Phys. 166(104250), 19 (2021)

    MathSciNet  MATH  Google Scholar 

  71. Ye, X.: The jumping phenomenon of Hodge numbers. Pac. J. Math. 235(2), 378–398 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  72. Ye, X.: The jumping phenomenon of the dimensions of cohomology groups of tangent sheaf. Acta Math. Sci. Ser. B (Engl. Ed.) 30(5), 1746–1758 (2010)

    MathSciNet  MATH  Google Scholar 

  73. Zhang, Y.: Geometric Quantization of Classical Metrics on the Moduli Space of Canonical Metrics. Ph.D. thesis, Lehigh University (2014)

  74. Zhao, Q., Rao, S.: Extension formulas and deformation invariance of Hodge numbers. C. R. Math. Acad. Sci. Paris 353(11), 979–984 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Kefeng Liu for his constant encouragement and many useful discussions. Many thanks to Sheng Rao, Quanting Zhao, Guillaume Rond, Xiaokui Yang, Kang Wei, Yang Shen, Shengmao Zhu, Kai Tang, Chunle Huang, Kai Liu and Ruosen Xiong for useful communications. I would also like to thank Prof. Bing-Long Chen for his constant support. I am very grateful to the anonymous referees for their careful reading and for many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xia.

Additional information

This work was supported by the National Natural Science Foundation of China No. 11901590 and Scientific Research Foundation of Chongqing University of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, W. Deformations of Dolbeault cohomology classes. Math. Z. 300, 2931–2973 (2022). https://doi.org/10.1007/s00209-021-02900-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02900-w

Keywords

Mathematics Subject Classification

Navigation