Skip to main content
Log in

Parabolic Hitchin maps and their generic fibers

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We set up a BNR correspondence for moduli spaces of Higgs bundles over a curve with a parabolic structure over any algebraically closed field. This leads to a concrete description of generic fibers of the associated strongly parabolic Hitchin map. We also show that the global nilpotent cone is equi-dimensional with half dimension of the total space. As a result, we prove the flatness and surjectivity of this map and the existence of very stable parabolic vector bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We thank the referee for pointing out this.

  2. Their notation for \(\mathcal {H}_P\) is \(\mathcal {A}_{\mathcal {G},P}\).

  3. Because \({\text {Ker}}f_{1}\cap V_{j}\) is a direct summand of \(V_{j}\).

  4. At x, \(a_{r}\) will always have multiple zeros except for Borel type.

References

  1. Baur, K.: Richardson elements for classical Lie algebras. J. Algebra 297(1), 168–185 (2006)

    Article  MathSciNet  Google Scholar 

  2. Braverman, A., Bezrukavnikov, R.: Geometric Langlands correspondence for \(\mathscr {D}\)-modules in prime characteristic: the G\(L(n)\) case. Pure Appl. Math. Q., 3(1, Special Issue: In honor of Robert D. MacPherson. Part 3):153–179 (2007)

  3. Baraglia, D., Kamgarpour, M.: On the image of the parabolic Hitchin map. Q. J. Math. 69(2), 681–708 (2018)

    Article  MathSciNet  Google Scholar 

  4. Baraglia, D., Kamgarpour, M., Varma, R.: Complete integrability of the parahoric Hitchin system. Int. Math. Res. Not. IMRN 21, 6499–6528 (2019)

    Article  MathSciNet  Google Scholar 

  5. Beauville, A., Narasimhan, M.S., Ramanan, S.: Spectral curves and the generalised theta divisor. J. Reine Angew. Math. 398, 169–179 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Bottacin, F.: Symplectic geometry on moduli spaces of stable pairs. Ann. Sci. École Norm. Sup. (4) 28(4), 391–433 (1995)

    Article  MathSciNet  Google Scholar 

  7. Biswas, I., Ramanan, S.: An infinitesimal study of the moduli of Hitchin pairs. J. Lond. Math. Soc. (2) 49(2), 219–231 (1994)

    Article  MathSciNet  Google Scholar 

  8. Donagi, R.Y., Gaitsgory, D.: The gerbe of Higgs bundles. Transf. Groups 7(2), 109–153 (2002)

    Article  MathSciNet  Google Scholar 

  9. Faltings, G.: Stable \(G\)-bundles and projective connections. J. Algebra. Geom. 2(3), 507–568 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Ginzburg, V.: The global nilpotent variety is Lagrangian. Duke Math. J. 109(3), 511–519 (2001)

    Article  MathSciNet  Google Scholar 

  11. Gothen, P.B., Oliveira, A.G.: The singular fiber of the Hitchin map. Int. Math. Res. Not. IMRN 5, 1079–1121 (2013)

    Article  MathSciNet  Google Scholar 

  12. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York(1977)

  13. Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55(1), 59–126 (1987)

    Article  MathSciNet  Google Scholar 

  14. Hitchin, N.: Stable bundles and integrable systems. Duke Math. J. 54(1), 91–114 (1987)

    Article  MathSciNet  Google Scholar 

  15. Humphreys, J.E.: Linear Algebraic Groups. Graduate Texts in Mathematics, vol. 21. Springer, New York (1975)

  16. Kazhdan, D., Lusztig, G.: Fixed point varieties on affine flag manifolds. Israel J. Math. 62(2), 129–168 (1988)

    Article  MathSciNet  Google Scholar 

  17. Laumon, G.: Un analogue global du cône nilpotent. Duke Math. J. 57(2), 647–671 (1988)

    Article  MathSciNet  Google Scholar 

  18. Logares, M., Martens, J.: Moduli of parabolic Higgs bundles and Atiyah algebroids. J. Reine Angew. Math. 649, 89–116 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Laszlo, Y., Sorger, C.: The line bundles on the moduli of parabolic \(G\)-bundles over curves and their sections. Ann. Sci. École Norm. Sup. (4) 30(4), 499–525 (1997)

    Article  MathSciNet  Google Scholar 

  20. Markman, E.: Spectral curves and integrable systems. Compos. Math. 93(3), 255–290 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Mehta, V.B., Seshadri, C.S.: Moduli of vector bundles on curves with parabolic structures. Math. Ann. 248(3), 205–239 (1980)

    Article  MathSciNet  Google Scholar 

  22. Jürgen N.: Algebraic number theory, volume 322 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin: Translated from the 1992 German original and with a note by Norbert Schappacher. With a foreword by Harder (1999)

  23. Ngo, B.C.: Le lemme fondamental pour les algèbres de Lie. Publ. Math. Inst. Hautes Études Sci. 111, 1–169 (2010)

    Article  Google Scholar 

  24. Nitsure, N.: Moduli space of semistable pairs on a curve. Proc. Lond. Math. Soc. (3) 62(2), 275–300 (1991)

    Article  MathSciNet  Google Scholar 

  25. Oka, M.: Introduction to plane curve singularities. Toric resolution tower and Puiseux pairs. In: Arrangements, local systems and singularities, volume 283 of Progr. Math., pages 209–245. Birkhäuser Verlag, Basel (2010)

  26. Serre, J.-P.: Local fields, volume 67 of Graduate Texts in Mathematics. Springer, New York (1979). Translated from the French by Marvin Jay Greenberg

  27. Simpson, C.T.: Harmonic bundles on noncompact curves. J. Am. Math. Soc. 3(3), 713–770 (1990)

    Article  MathSciNet  Google Scholar 

  28. Simpson, C.T.: Higgs bundles and local systems. Publ. Math. Inst. Hautes Études Sci. 75, 5–95 (1992)

    Article  MathSciNet  Google Scholar 

  29. Scheinost, P., Schottenloher, M.: Metaplectic quantization of the moduli spaces of flat and parabolic bundles. J. Reine Angew. Math. 466, 145–219 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Varma, R.: Global nilpotent cone is isotropic: parahoric torsors on curves. arXiv:1607.00735 (2016)

  31. Verdier, J.-L., Le Potier, J. (ed). Module des fibrés stables sur les courbes algébriques, volume 54 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1985. Papers from the conference held at the École Normale Supérieure, Paris (1983)

  32. Wang, J., Wen, X.: On the moduli spaces of parabolic symplectic orthogonal bundles on curves. arXiv:2101.02383 (2021)

  33. Yokogawa, K.: Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves. J. Math. Kyoto Univ. 33(2), 451–504 (1993)

    MathSciNet  MATH  Google Scholar 

  34. Yokogawa, K.: Infinitesimal deformation of parabolic Higgs sheaves. Int. J. Math. 6(1), 125–148 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Eduard Looijenga. Discussions with Eduard motivated our proof of the first main theorem and significantly affected the organization of this paper. The authors thank the referee for many helpful comments and suggestions to improve the paper. The authors also thank Bingyi Chen, Yifei Chen, Héléne Esnault, Yi Gu, Peigen Li, Yichen Qin, Junchao Shentu, Xiaotao Sun and Xiaokui Yang for helpful discussions. The work of Xiaoyu Su and Xueqing Wen was performed at Yau Mathematical Sciences Center and supported by Tsinghua Postdoctoral daily Foundation. The work of Bin Wang was performed at the Steklov International Mathematical Center, Moscow, Russia and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2019-1614 ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Su.

Appendix

Appendix

In this appendix, we discuss singularities of generic spectral curves, along with ramifications. Since we may work over positive characteristics, a little bit more work is needed to use the Jacobian criterion. We assume \(D=x\) and if \(\text {char}(k)=2\), rank \(r\ge 3\).

Lemma 8

For a generic choice of \(a\in \mathcal {H}_{P}\), the corresponding spectral curve \(X_{a}\) is integral, totally ramified over x, and smooth elsewhere.

Proof

Since being integral is an open condition, similar as in [5, Remark 3.1], we only need to show there exists \( a\in \mathcal {H}_P\), such that \(X_{a}\) is integral.

Take \(h_P((\mathcal {E},\theta ))=\lambda ^{r}+a_{r}=0\) with \(a_{r}\in H^{0}(X, \omega ^{\otimes r}((r-\gamma _{r})\cdot x))\). The spectral curve \(X_a\) is integral if \(a_{r}\) is not an m-th power of some element in \(\oplus _{i=1}^{r}H^{0}(X,\omega _X^{\otimes i}((i-\gamma _{i})x))\), for \(m>1\). This is true for generic \(a_{r}\).

Since smoothness outside x is an open condition, it is sufficient to find such a spectral curve.

When \(\text {char}(k)\not \mid r\), we take \(h_P((\mathcal {E},\theta ))=\lambda ^{r}+a_{r}=0\). Due to the weak Bertini theorem, we can choose \(a_{r}\) with only simple roots outside x. Applying the Jacobian criterion, \(X_{a}\) is what we want.

When \(\text {char}(k)\mid r\), we take the following equation:

$$\begin{aligned} h_P((\mathcal {E},\theta ))=\lambda ^{r}+a_{r-1}\lambda +a_{r}=0. \end{aligned}$$

Then consider the following equations:

$$\begin{aligned}\left\{ \begin{array}{rlcl} \lambda ^{r}+a_{r-1}\lambda +&{}a_{r}&{}=&{}0\\ &{}a_{r-1}&{}=&{}0\\ a'_{r-1}\lambda +&{}a'_{r}&{}=&{}0 \end{array}\right. .\end{aligned}$$

If \(\text {char}(k)=2\), we assume \(r\ge 3\). Then in this case, i.e., \(\text {char}(k)\mid r\), r is always greater than 2. By the weak Bertini theorem, we can choose \(a_{r-1}\) with only simple roots outside of x. Take \(s\in H^0(X,\omega ((1+\gamma _r-\gamma _{r-1})x))\) with zeros outside of \(zero(a_{r-1})\), we can find \(a_{r}=a_{r-1}\otimes s\) such that \(zero(a_{r-1})\supset zero(a_{r})\), and \(zero(a_{r-1})\) are simple zeros of \(a_r\), then \(X_{a}\) is smooth outside of x.Footnote 4\(\square \)

Lemma 9

For a generic \(a\in \mathcal {H}\), the corresponding spectral curve \(X_{a}\) is smooth and \(\pi _a:X_{a}\rightarrow X\) is unramified over x.

Proof

Smoothness is easy to show under the genericity condition. We will prove the second statement. The ramification divisor of \(\pi _a\) is defined by the resultant. It is a divisor in the linear system of the line bundle \(R:=\omega _X(x)^{\otimes r(r-1)}\). Considering the following morphism given by the resultant

$$\begin{aligned} \text {Res}: \mathcal {H}\rightarrow H^{0}(X,R),\quad a\mapsto \text {Res}(a),\end{aligned}$$

we have the codimension 1 sub-space

$$\begin{aligned}W:=H^{0}(X,R(-x))\subset H^{0}(X,R),\end{aligned}$$

such that \(\text {Res}(a)\in W\) if and only if \(\pi _a\) is ramified over x.

\({\text {Res}}\) is a polynomial map so the image is a sub-variety. To prove our statement, we only need to find a particular a so that \(\pi _a\) is unramified over x.

Consider the characteristic polynomial of the form \(\lambda ^r+a_r\). In a neighbourhood of x, we can write it as \(\lambda ^r+b_r\cdot (\frac{dt}{t})^{\otimes r}\). Here \(\frac{dt}{t}\) is the trivialization of \(\omega (x)\) near x. By the Jacobian criterion, \(\pi _a\) is unramified over x if \(b_r\in \mathcal {O}_{X,x}\) is indecomposable. Taking \(b_r=t\) and extending \(t\cdot (\frac{dt}{t})^{\otimes r}\) to a global section s, we find \(a=\lambda ^r+s\) such that \(\pi _a\) is unramified at x. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Wang, B. & Wen, X. Parabolic Hitchin maps and their generic fibers. Math. Z. 301, 343–372 (2022). https://doi.org/10.1007/s00209-021-02896-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02896-3

Keywords

Navigation