Skip to main content
Log in

The derived deformation theory of a point

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We provide a prorepresenting object for the noncommutative derived deformation problem of deforming a module X over a differential graded algebra. Roughly, we show that the corresponding deformation functor is homotopy prorepresented by the dual bar construction on the derived endomorphism algebra of X. We specialise to the case when X is one-dimensional over the base field, and introduce the notion of framed deformations, which rigidify the problem slightly and allow us to obtain derived analogues of the results of Ed Segal’s thesis. Our main technical tool is Koszul duality, following Pridham and Lurie’s interpretation of derived deformation theory. Along the way we prove that a large class of dgas are quasi-isomorphic to their Koszul double dual, which we interpret as a derived completion functor; this improves a theorem of Lu–Palmieri–Wu–Zhang. We also adapt our results to the setting of multi-pointed deformation theory, and furthermore give an analysis of universal prodeformations. As an application, we give a deformation-theoretic interpretation to Braun–Chuang–Lazarev’s derived quotient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The connective hypothesis is to avoid stacky pathologies: loosely, one thinks of the connective direction of some derived-geometric object as recording derived phenomena, and one thinks of the nonconnective direction as recording stacky phenomena. More explicitly, our results fail badly if one allows nonconnective dgas as input; see 5.3.4 for an example.

  2. See [31, Chapter V] or [73, 1.23] for the definition of homotopy quotients.

  3. Composition is given by the Alexander–Whitney map.

  4. Composition is now given by the Eilenberg–Zilber map.

  5. A priori, this notation is abusive as it depends on both the choice of the cofibrant resolution of X and on the choice of lift of \(g^\circ \). However, we will see that up to quasi-isomorphism these choices do not matter.

  6. Such flopping contractions are called simple.

References

  1. Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie des topos et cohomologie étale des schémas (SGA 4), volume 269 of Lecture Notes in Mathematics. Springer, Berlin-New York (1972)

  2. Amiot, C.: Cluster categories for algebras of global dimension 2 and quivers with potential. Ann. Inst. Fourier (Grenoble) 59(6), 2525–2590 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Braun, C., Chuang, J., Lazarev, A.: Derived localisation of algebras and modules. Adv. Math. 328, 555–622 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergner, J.E.: A model category structure on the category of simplicial categories. Trans. Am. Math. Soc. 359(5), 2043–2058 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bousfield, A.K., Gugenheim, V.K.A.M.: On \({\rm PL}\) de Rham theory and rational homotopy type. Mem. Am. Math. Soc. 8(179), ix+94 (1976)

    MathSciNet  MATH  Google Scholar 

  6. Brantner, L., Mathew, A.: Deformation theory and partition Lie algebras (2019). arXiv:1904.07352

  7. Barthel, T., May, J.P., Riehl, E.: Six model structures for DG-modules over DGAs: model category theory in homological action. New York J. Math. 20, 1077–1159 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Booth, M.: The derived contraction algebra. PhD thesis, The University of Edinburgh (2019). arXiv:1911.09626

  9. Booth, M.: Singularity categories via the derived quotient. Adv. Math. 381, 107631 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bousfield, A.K.: The localization of spectra with respect to homology. Topology 18(4), 257–281 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bousfield, A.K.: Cosimplicial resolutions and homotopy spectral sequences in model categories. Geom. Topol. 7, 1001–1053 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christensen, J.D., Isaksen, D.C.: Duality and pro-spectra. Algebr. Geom. Topol. 4, 781–812 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Campos, R., Petersen, D., Robert-Nicoud, D., Wierstra, F.: Lie, associative and commutative quasi-isomorphism (2019). arXiv:1904.03585

  14. Cegarra, A.M., Remedios, J.: The relationship between the diagonal and the bar constructions on a bisimplicial set. Topol. Appl. 153(1), 21–51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dwyer, W.G., Greenlees, J.P.C.: Complete modules and torsion modules. Am. J. Math. 124(1), 199–220 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dwyer, W.G., Greenlees, J.P.C., Iyengar, S.: Duality in algebra and topology. Adv. Math. 200(2), 357–402 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Di Natale, C.: Grassmannians and period mappings in derived algebraic geometry. PhD thesis, The University of Cambridge (2015)

  18. Dwyer, W.G., Spaliński, J.: Homotopy theories and model categories. In: Handbook of algebraic topology, pp. 73–126. North-Holland, Amsterdam (1995)

  19. Donovan, W., Wemyss, M.: Noncommutative deformations and flops. Duke Math. J. 165(8), 1397–1474 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Donovan, W., Wemyss, M.: Contractions and deformations. Am. J. Math. 141(3), 563–592 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dwyer, W.G.: Exotic convergence of the Eilenberg-Moore spectral sequence. Illinois J. Math. 19(4), 607–617 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Efimov, A.I.: Formal completion of a category along a subcategory (2010). arXiv:1006.4721

  23. Edwards, D.A., Hastings, H.M.: Čech and Steenrod homotopy theories with applications to geometric topology. In: Lecture Notes in Mathematics, vol. 542. Springer, Berlin, New York (1976)

  24. Edwards, D.A., Hastings, H.M.: Čech theory: its past, present, and future. Rocky Mount. J. Math. 10(3), 429–468 (1980)

    Article  MATH  Google Scholar 

  25. Efimov, A.I., Lunts, V.A., Orlov, D.O.: Deformation theory of objects in homotopy and derived categories. I. Gener. Theory Adv. Math. 222(2), 359–401 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Efimov, A.I., Lunts, V.A., Orlov, D.O.: Deformation theory of objects in homotopy and derived categories. II. Pro-representability of the deformation functor. Adv. Math. 224(1), 45–102 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Efimov, A.I., Lunts, V.A., Orlov, D.O.: Deformation theory of objects in homotopy and derived categories III: Abelian categories. Adv. Math. 226(5), 3857–3911 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Eriksen, Eivind: An introduction to noncommutative deformations of modules. In: Noncommutative algebra and geometry, volume 243 of Lect. Notes Pure Appl. Math., pp. 90–125. Chapman & Hall/CRC, Boca Raton (2006)

  29. Félix, Y., Halperin, S., Thomas, J.-C.: Rational Homotopy Theory, volume 205 of Graduate Texts in Mathematics. Springer, New York (2001)

    Book  Google Scholar 

  30. Getzler, E., Goerss, P.: A model category structure for differential graded coalgebras (1999). http://www.math.northwestern.edu/pgoerss/papers/model.ps

  31. Goerss, P.G., Jardine, J.F.: Simplicial Homotopy Theory. Modern Birkhäuser Classics. Birkhäuser, Basel (2009)

    Book  Google Scholar 

  32. Guan, A., Lazarev, A., Sheng, Y., Tang, R.: Review of deformation theory II: a homotopical approach. Adv. Math. (China) 49(3), 278–298 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Goldman, W.M., Millson, J.J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Études Sci. Publ. Math. 67, 43–96 (1988)

    Article  MATH  Google Scholar 

  34. Greenlees, J.P.C., May, J.P.: Derived functors of \(I\)-adic completion and local homology. J. Algebra 149(2), 438–453 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Grothendieck, A.: Technique de descente et théorèmes d’existence en géométrie algébrique. II. Le théorème d’existence en théorie formelle des modules. In: Séminaire Bourbaki, Vol. 5, pages Exp. No. 195, 369–390. Soc. Math. France, Paris (1995)

  36. Herscovich, E.: Hochschild (co)homology of Koszul dual pairs. J. Noncommut. Geom. 13(1), 59–85 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hinich, V.: Homological algebra of homotopy algebras. Comm. Algebra 25(10), 3291–3323 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hinich, V.: DG coalgebras as formal stacks. J. Pure Appl. Algebra 162(2–3), 209–250 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hinich, V.: Homotopy coherent nerve in deformation theory (2015). arXiv:0704.2503

  40. Hua, Z., Keller, B.: Cluster categories and rational curves (2018). arXiv:1810.00749

  41. Hoshino, M., Kato, Y., Miyachi, J.-I.: On \(t\)-structures and torsion theories induced by compact objects. J. Pure Appl. Algebra 167(1), 15–35 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hoffbeck, E., Leray, J., Vallette, B.: Properadic homotopical calculus. Int. Math. Res. Not. IMRN 5, 3866–3926 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hovey, M.: Model Categories, volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1999)

    Google Scholar 

  44. Huybrechts, D.: Fourier-Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  45. Isaksen, D.C.: Strict model structures for pro-categories. In: Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), volume 215 of Progr. Math., pages 179–198. Birkhäuser, Basel (2004)

  46. Jardine, J.F.: Representability theorems for presheaves of spectra. J. Pure Appl. Algebra 215(1), 77–88 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kadeishvili, T.V.: On the homology theory of fibre spaces. Russ. Math. Surv. 35, 231–238 (1980)

    Article  MATH  Google Scholar 

  48. Kawamata, Y.: On multi-pointed non-commutative deformations and Calabi-Yau threefolds. Compos. Math. 154(9), 1815–1842 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Keller, B.: Introduction to \(A\)-infinity algebras and modules. Homol. Homotopy Appl. 3(1), 1–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Keller, B.: On differential graded categories. In: International Congress of Mathematicians. Vol. II, pp. 151–190. Eur. Math. Soc., Zürich (2006)

  51. Kashiwara, M., Schapira, P.: Categories and Sheaves, volume 332 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (2006)

    Google Scholar 

  52. Keller, B., Yang, D.: Derived equivalences from mutations of quivers with potential. Adv. Math. 226(3), 2118–2168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kalck, M., Yang, D.: Relative singularity categories I: Auslander resolutions. Adv. Math. 301, 973–1021 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kalck, M., Yang, D.: Relative singularity categories III: cluster resolutions (2020). arXiv:2006.09733

  55. Laudal, O.A.: Noncommutative deformations of modules. Homol. Homotopy Appl. 4(2, part 2), 357–396 (2002). (The Roos Festschrift volume, 2)

    Article  MathSciNet  MATH  Google Scholar 

  56. Lefèvre-Hasegawa, K.: Sur les \(A_\infty \)-catégories. PhD thesis, Université Paris Diderot (2003). arXiv:math/0310337

  57. Lu, D.M., Palmieri, J.H., Wu, Q.S., Zhang, J.J.: Koszul equivalences in \(A_\infty \)-algebras. New York J. Math. 14, 325–378 (2008)

    MathSciNet  MATH  Google Scholar 

  58. Lurie, J.: Higher Topos Theory, volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton (2009)

    Google Scholar 

  59. Lurie, J.: Derived algebraic geometry X: formal moduli problems (2011). http://www.math.harvard.edu/lurie/papers/DAG-X.pdf. Accessed 5 Nov 2011

  60. Lurie, J.: Derived algebraic geometry XIV: Representability theorems (2012). http://www.math.harvard.edu/lurie/papers/DAG-XIV.pdf. Accessed 14 Mar 2012

  61. Lurie, J.: Higher algebra (2017). http://www.math.harvard.edu/lurie/papers/HA.pdf. Accessed 18 Sep 2017

  62. Lurie, J.: Spectral algebraic geometry (2018). https://www.math.ias.edu/lurie/papers/SAG-rootfile.pdf. Accessed 3 Feb 2018

  63. Loday, J.-L., Vallette, B.: Algebraic Operads, volume 346 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  64. Manetti, M.: Deformation theory via differential graded Lie algebras. In: Algebraic Geometry Seminars, 1998–1999 (Italian) (Pisa), pp. 21–48. Scuola Norm. Sup., Pisa (1999)

  65. Manetti, M.: Lectures on deformations of complex manifolds (deformations from differential graded viewpoint). Rend. Mat. Appl. (7) 24(1), 1–183 (2004)

    MathSciNet  MATH  Google Scholar 

  66. Mantovani, L.: Localizations and completions of stable \(\infty \)-categories (2021). arXiv:2105.02285

  67. Neeman, A.: The connection between the \(K\)-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel. Ann. Sci. École Norm. Sup. (4) 25(5), 547–566 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  68. Negron, C.: The cup product on Hochschild cohomology via twisting cochains and applications to Koszul rings. J. Pure Appl. Algebra 221(5), 1112–1133 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  69. Positselski, L.: Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence. Mem. Am. Math. Soc. 212(996), vi+133 (2011)

    MathSciNet  MATH  Google Scholar 

  70. Pridham, J.P.: Unifying derived deformation theories. Adv. Math. 224(3), 772–826 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  71. Pridham, J.P.: Derived moduli of schemes and sheaves. J. K-Theory 10(1), 41–85 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  72. Pridham, J.P.: Representability of derived stacks. J. K-Theory 10(2), 413–453 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  73. Pridham, J.P.: Derived deformations of Artin stacks. Comm. Anal. Geom. 23(3), 419–477 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  74. Pridham, J.P.: Non-commutative derived moduli prestacks 2020. arXiv:2008.11684

  75. Porta, M., Shaul, L., Yekutieli, A.: Completion by derived double centralizer. Algebr. Represent. Theory 17(2), 481–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  76. Porta, M., Shaul, L., Yekutieli, A.: On the homology of completion and torsion. Algebr. Represent. Theory 17(1), 31–67 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  77. Quillen, D.: Homotopical Algebra. Lecture Notes in Mathematics, No. 43. Springer, Berlin-New York (1967)

    Book  Google Scholar 

  78. Riehl, E.: Categorical Homotopy Theory, volume 24 of New Mathematical Monographs. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  79. Segal, E.: The \(A_\infty \) deformation theory of a point and the derived categories of local Calabi-Yaus. J. Algebra 320(8), 3232–3268 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  80. Shaul, L.: Completion and torsion over commutative DG rings. Israel J. Math. 232(2), 531–588 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  81. Schwede, S., Shipley, B.: Equivalences of monoidal model categories. Algebr. Geom. Topol. 3, 287–334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  82. Strickland, N.P.: \(K(N)\)-local duality for finite groups and groupoids. Topology 39(4), 733–772 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  83. Tabuada, G.: Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories. C. R. Math. Acad. Sci. Paris 340(1), 15–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  84. Tabuada, G.: Differential graded versus simplicial categories. Topology Appl. 157(3), 563–593 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  85. Tabuada, G.: Generalized spectral categories, topological Hochschild homology and trace maps. Algebr. Geom. Topol. 10(1), 137–213 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  86. Toda, Y.: On a certain generalization of spherical twists. Bull. Soc. Math. France 135(1), 119–134 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  87. Toën, B.: The homotopy theory of \(dg\)-categories and derived Morita theory. Invent. Math. 167(3), 615–667 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  88. Toën, B.: Lectures on dg-categories. In: Topics in algebraic and topological \(K\)-theory, volume 2008 of Lecture Notes in Math., pp. 243–302. Springer, Berlin (2011)

  89. Van den Bergh, M.: Three-dimensional flops and noncommutative rings. Duke Math. J. 122(3), 423–455 (2004)

    MathSciNet  MATH  Google Scholar 

  90. Weibel, C.A.: An Introduction to Homological Algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  91. Yekutieli, A.: MC elements in pronilpotent DG Lie algebras. J. Pure Appl. Algebra 216(11), 2338–2360 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  92. Yekutieli, A.: Derived Categories, volume 183 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Booth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Booth, M. The derived deformation theory of a point. Math. Z. 300, 3023–3082 (2022). https://doi.org/10.1007/s00209-021-02892-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02892-7

Keywords

Mathematics Subject Classification

Navigation