Skip to main content
Log in

Extremal functions for real convex bodies: simplices, strips, and ellipses

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We present an explicit method to compute the (Siciak–Zaharjuta) extremal function of a real convex polytope in terms of supporting simplices and strips. We use this to give a new proof of the existence of extremal ellipses associated to the extremal function of a real convex body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This terminology was introduced in [7].

  2. The definition that follows will also extend to degenerate ellipses; see Remark 7.5 below.

  3. To apply the lemma precisely, we also need the fact that some multiple of v translates a vertex of \(F_j\) into the interior of \(\Sigma \); this is easy to see.

  4. Recall that in terms of the c parameter, \({\mathcal {R}}_{K_0}(c\zeta _0)=z_0\).

  5. One can use the vertices of K to compute these (see e.g., [17]).

References

  1. Baran, M.: Plurisubharmonic extremal functions and complex foliations for the complement of convex sets in \({\mathbb{R}}^n\). Michigan Math. J. 39(3), 395–404 (1992)

    Article  MathSciNet  Google Scholar 

  2. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37, 1–44 (1976)

    Article  MathSciNet  Google Scholar 

  3. Bedford, E., Taylor, B.A.: Plurisubharmonic functions with logarithmic singularities. Ann. Inst. Fourier (Grenoble) 38(4), 133–171 (1988)

    Article  MathSciNet  Google Scholar 

  4. Bloom, T., Levenberg, N., Ma‘u, S.: Robin functions and extremal functions. Ann. Pol. Math., 80:55–84, (2003)

  5. Bos, L., Ma‘u, S., Waldron, S.: Extremal growth of polynomials. Anal. Math. 46(2), 195–224 (2020)

  6. Burns, D., Levenberg, N., Ma‘u, S.: Pluripotential theory for convex bodies in \({\mathbb{R}}^n\). Math. Z. 250, 91–111 (2005)

  7. Burns, D., Levenberg, N., Ma‘u, S.: Exterior Monge-Ampère solutions. Adv. Math. 222, 331–358 (2009)

  8. Burns, D., Levenberg, N., Ma‘u, S.: Extremal functions for real convex bodies. Ark. Mat. 53(2), 203–236 (2015)

  9. Burns, D., Levenberg, N., Ma‘u, S., Revesz, S.: Monge-Ampère measures for convex bodies and Bernstein-Markov type inequalities. Trans. Amer. Math. Soc. 362(12), 6325–6340 (2010)

  10. Hart, J., Ma‘u, S.: Chebyshev and Robin constants on algebraic curves. Ann. Polon. Math. 115(2), 101–121 (2015)

  11. Klimek, M.: Pluripotential Theory. The Clarendon Press, Oxford University Press, New York (1991)

    MATH  Google Scholar 

  12. Lempert, L.: La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. France 109(4), 427–424 (1981)

    Article  MathSciNet  Google Scholar 

  13. Lempert, L.: Intrinsic distances and holomorphic retracts. In Complex analysis and applications ’81 (Varna, 1981), pages 341–364. Publ. House Bulgar. Acad. Sci., (1984)

  14. Lempert, L.: Symmetries and other transformations of the complex Monge-Ampère equation. Duke Math. J. 52(4), 869–885 (1985)

    Article  MathSciNet  Google Scholar 

  15. Levenberg, N., Perera, M.: A global domination principle for \(P\)-pluripotential theory. In Complex analysis and spectral theory, volume 743 of Contemp. Math., pages 11–19. Amer. Math. Soc., Providence, RI, (2020)

  16. Lundin, M.: The extremal PSH for the complement of convex, symmetric subsets of \({\mathbb{R}}^n\). Michigan Math. J. 32(2), 197–201 (1985)

    Article  MathSciNet  Google Scholar 

  17. Matt J. Analyze \(N\)-dimensional Polyhedra in terms of Vertices or (In)Equalities (https://www.mathworks.com/matlabcentral/fileexchange/30892-analyze-n-dimensional-polyhedra-in-terms-of-vertices-or-in-equalities). MATLAB Central File Exchange, (2020)

  18. Piazzon, F.: The extremal plurisubharmonic function of the torus. Dolomites Res. Notes Approx., 11(Special Issue Norm Levenberg):62–72, (2018)

  19. Sadullaev, A.: Estimates of polynomials on analytic sets. Izv. Akad. Nauk SSSR Ser. Mat. 46(3), 524–534 (1982)

    MathSciNet  MATH  Google Scholar 

  20. Trefethen, L.N.: Multivariate polynomial approximation in the hypercube. Proc. Amer. Math. Soc. 145(11), 4837–4844 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the referee for a number of helpful comments that simplified some of the arguments, and also for the formulation of Theorem 12.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sione Ma‘u.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma‘u, S. Extremal functions for real convex bodies: simplices, strips, and ellipses. Math. Z. 300, 3227–3267 (2022). https://doi.org/10.1007/s00209-021-02891-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02891-8

Navigation