Skip to main content
Log in

Bers slices in families of univalent maps

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We construct embeddings of Bers slices of ideal polygon reflection groups into the classical family of univalent functions \(\varSigma \). This embedding is such that the conformal mating of the reflection group with the anti-holomorphic polynomial \(z\mapsto \overline{z}^d\) is the Schwarz reflection map arising from the corresponding map in \(\varSigma \). We characterize the image of this embedding in \(\varSigma \) as a family of univalent rational maps. Moreover, we show that the limit set of every Kleinian reflection group in the closure of the Bers slice is naturally homeomorphic to the Julia set of an anti-holomorphic polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aharonov, D., Shapiro, H.S.: Domains on which analytic functions satisfy quadrature identities. J. Anal. Math. 30, 39–73 (1976)

    Article  MathSciNet  Google Scholar 

  2. Anderson, J.W., Maskit, B.: On the local connectivity of limit sets of Kleinian groups. Complex Variables Theory Appl. 31(2), 177–183 (1996)

    Article  MathSciNet  Google Scholar 

  3. Bers, L.: Simultaneous uniformization. Bull. Am. Math. Soc, 66(2), 94–97 (1960)

    Article  MathSciNet  Google Scholar 

  4. Bowen, R., Series, C.: Markov maps associated with Fuchsian groups. Publ. Math. IHÉS 50, 153–170 (1979)

    Article  MathSciNet  Google Scholar 

  5. Bullett, S., Lomonaco, L.: Mating quadratic maps with the modular group II. Invent. Math. 220, 185–210 (2020)

    Article  MathSciNet  Google Scholar 

  6. Bullett, S., Penrose, C.: Mating quadratic maps with the modular group. Invent, Math. 115, 483–511 (1994)

    Article  MathSciNet  Google Scholar 

  7. Carleson, L., Gamelin, T.W.: Complex Dynamics. Springer, Berlin (1993)

    Book  Google Scholar 

  8. Douady, A.: Systèmes dynamiques holomorphes. In: Séminaire Bourbaki, vol. 1982/83, pp. 39–63. Astérisque, 105–106. Soc. Math. France, Paris (1983)

  9. Douady, A., Hubbard, J.H.: Étude dynamique des polynômes complexes I, II. Publications Mathématiques d’Orsay. Université de Paris-Sud, Département de Mathématiques, Orsay (1984–1985)

  10. Kerckhoff, S.P., Thurston, W.P.: Non-continuity of the action of the modular group at Bers’ boundary of Teichmuller space. Invent. Math. 100, 25–47 (1990)

    Article  MathSciNet  Google Scholar 

  11. Lazebnik, K., Makarov, N.G., Mukherjee, S.: Univalent polynomials and Hubbard trees. Trans. Am. Math. Soc. 374(7), 4839–4893 (2021)

    Article  MathSciNet  Google Scholar 

  12. Lee, S.Y., Lyubich, M., Makarov, N.G., Mukherjee, S.: Dynamics of Schwarz reflections: the mating phenomena (2018). https://arxiv.org/abs/1811.04979v2

  13. Lee, S.Y., Lyubich, M., Makarov, N.G., Mukherjee, S.: Schwarz reflections and the Tricorn (2018). https://arxiv.org/abs/1812.01573v1

  14. Lee, S.Y., Makarov, N.: Sharpness of connectivity bounds for quadrature domains (2014). https://arxiv.org/abs/1411.3415v1

  15. Lee, S.Y., Makarov, N.G.: Topology of quadrature domains. J. Am. Math. Soc. 29(2), 333–369 (2016)

    Article  MathSciNet  Google Scholar 

  16. Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane, 2nd edn. Springer-Verlag, New York. Translated from the German by K, p. 126. W. Lucas, Die Grundlehren der mathematischen Wissenschaften, Band (1973)

  17. Lodge, R., Lyubich, M., Merenkov, S., Mukherjee, S.: On dynamical gaskets generated by rational maps, Kleinian groups, and Schwarz reflections (2019). https://arxiv.org/abs/1912.13438v1

  18. Lyubich, M., Merenkov, S., Mukherjee, S., Ntalampekos, D.: David extension of circle homeomorphisms, mating, and removability (2020). https://arxiv.org/abs/2010.11256v2

  19. Lyubich, M., Minsky, Y.: Laminations in holomorphic dynamics. J. Diff. Geom. 47, 17–94 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Marden, A.: Outer Circles: An Introduction to Hyperbolic 3-Manifolds. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  21. McMullen, C.T.: The classification of conformal dynamical systems. In: Bott, R., Hopkins, M., Jaffe, A., Singer, I., Stroock, D.W., Yau, S.T. (eds.) Current Developments in Mathematics, pp. 323–360. International Press, Cambridge (1995)

    Google Scholar 

  22. Milnor, J.: Dynamics in one complex variable. In: Annals of Mathematics Studies, vol. 160, 3rd edn. Princeton University Press, Princeton, NJ (2006)

  23. Mj, M., Series, C.: Limits of limit sets I. Geom. Dedicata 167, 35–67 (2013)

    Article  MathSciNet  Google Scholar 

  24. Petersen, C.L., Meyer, D.: On the notions of mating. Ann. Fac. Sci. Toulouse Math. Ser. 21(S5), 839–876 (2012)

    Article  MathSciNet  Google Scholar 

  25. Pilgrim, K.M.: Combinations of complex dynamical systems. In: Lecture Notes in Mathematics. Springer (2003)

  26. Poirier, A.: Hubbard forests. Ergodic Theory Dyn. Syst. 33, 303–317 (2013)

    Article  MathSciNet  Google Scholar 

  27. Stephenson, K.: Introduction to Circle Packing: The Theory of Discrete Analytic Functions. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  28. Sullivan, D.: Quasiconformal homeomorphisms and dynamics I. Solution of the Fatou-Julia problem on wandering domains. Ann. Math. 122(2), 401–418 (1985)

    Article  MathSciNet  Google Scholar 

  29. Sullivan, D., McMullen, C.T.: Quasiconformal homeomorphisms and dynamics III: the Teichmüller space of a holomorphic dynamical system. Adv. Math. 135, 351–395 (1998)

    Article  MathSciNet  Google Scholar 

  30. Tukia, P.: On isomorphisms of geometrically finite Möbius groups. Inst. Hautes Étud. Sci. Publ. Math. 61, 171–214 (1985)

    Article  MathSciNet  Google Scholar 

  31. Vinberg, E.B., Shvartsman, O.V.: Geometry II: Spaces of Constant Curvature. In: Encyclopaedia of Mathematical Sciences, vol. 29. Springer-Verlag (1993)

Download references

Acknowledgements

The third author was supported by an endowment from Infosys Foundation and SERB research grant SRG/2020/000018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Lazebnik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazebnik, K., Makarov, N.G. & Mukherjee, S. Bers slices in families of univalent maps. Math. Z. 300, 2771–2808 (2022). https://doi.org/10.1007/s00209-021-02871-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02871-y

Keywords

Mathematics Subject Classification

Navigation