Skip to main content
Log in

On Kuznetsov–Bykovskii’s formula of counting prime geodesics

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We generalize a formula on the counting of prime geodesics, due to Kuznetsov–Bykovskii, used in the work of Soundararajan–Young on the prime geodesic theorem. The method works over any number field and for any congruence subgroup. We give explicit computation in the cases of principal and Hecke subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This identity has the following explanation: The image of \(\mathbf {Z}_1({\mathbb {A}}) \mathrm{SL}_2(\mathbf{F }) \backslash \mathrm{SL}_2({\mathbb {A}}) \hookrightarrow \mathbf {Z}({\mathbb {A}}) \mathrm{GL}_2(\mathbf{F }) \backslash \mathrm{GL}_2({\mathbb {A}})\) is characterized by \(\det g \in {\mathbb {I}}_{\mathbf{F }}^2\).

  2. A simpler way is to observe that in this case \(\alpha (\alpha + \varpi ^r) \in {\mathfrak {p}}^{n+r-l}\) is equivalent to \(\alpha \in {\mathfrak {p}}^{\left\lceil \frac{n+r-l}{2} \right\rceil }\). This observation applies also to the non-split case.

References

  1. Balkanova, O., Chatzakos, D., Cherubini, G., Frolenkov, D., Laaksonen, N.: Prime geodesic theorem in the 3-dimensional hyperbolic space (2018). arXiv:1712.00880v2

  2. Balkanova, O., Frolenkov, D.: Prime geodesic theorem for the Picard manifold (2018). arXiv:1804.00275v2

  3. Balkanova, O., Frolenkov, D.: The second moment of the second moment of symmetric square \(L\)-functions over gaussian integers (2020). arXiv:2008.13399

  4. Balog, A., Biró, A., Cherubini, G., Laaksonen, N.: Bykovskii-type theorem for the Picard manifold. Int. Math. Res. Notes 00, 1–29 (2020)

    Google Scholar 

  5. Blomer, V., Brumley, F.: On the Ramanujan conjecture over number fields. Ann. Math. 174, 581–605 (2011)

  6. Bykovskii, V.A.: Density theorems and the mean value of arithmetic functions in short intervals (Russian). Zap. Nauchn. Semin. POMI/translation in J. Math. Sci. (N.Y.) 212/83,/ 6(1994/1997), 56–70/720–730

  7. Cai, Y.: Prime geodesic theorem. Journal de Théorie des Nombres de Bordeaux 14(1), 59–72 (2002)

    Article  MathSciNet  Google Scholar 

  8. Conrey, J.B., Iwaniec, H.: The cubic moment of central values of automorphic \(L\)-functions. Ann. Math. 151(3), 1175–1216 (2000)

    Article  MathSciNet  Google Scholar 

  9. Elstrodt, J., Grunewald, F., Mennicke, J.: Groups Acting on Hyperbolic Space. In: Harmonic Analysis and Number Theory. Springer Monographs in Mathematics. Springer, Berlin, Heidelberg (1998)

  10. Gelbart, S.S., Jacquet, H.: Forms of GL(2) from the analytic point of view. Proc. Symp. Pure Math. 33, 213–251 (1979)

    Article  MathSciNet  Google Scholar 

  11. Iwaniec, H.: Prime geodesic theorem. Journal für die reine und angewandte Mathematik 1984(349), 136–159 (1984)

    Article  MathSciNet  Google Scholar 

  12. Jacquet, H., Zagier, D.: Eisenstein series and the Selberg trace formula. II. Trans. Am. Math. Soc. 300(1), 1–48 (1987)

    Article  MathSciNet  Google Scholar 

  13. Joyner, D.: On the Kuznetsov–Bruggeman formula for a Hilbert modular surface having one cusp. Math. Z. 203, 59–104 (1990)

    Article  MathSciNet  Google Scholar 

  14. Kac, M.: Can one hear the shape of a drum? Am. Math. Mon. 73, 1–23 (1966)

    Article  MathSciNet  Google Scholar 

  15. Kim, H .H., Sarnak, P.: Refined estimates towards the Ramanujan and Selberg conjectures (Appendix 2 to H. Kim, Functoriality for the exterior square of \(GL_4\) and the symmetric fourth of \(GL_2\)). J. Am. Math. Soc. 16(1), 139–183 (2002)

    Article  Google Scholar 

  16. Koyama, S.: Prime geodesic theorem for the Picard manifold under the mean Lindelöf hypothesis. Forum Math. 13(6), 781–793 (2001)

    Article  MathSciNet  Google Scholar 

  17. Luo, W., Sarnak, P.: Quantum ergodicity of eigenfunctions on \(\rm PSL_2(mathbb Z\rm ) \backslash mathbb H\rm ^2\). Publications mathématiques de l’IHÉS 81, 207–237 (1995)

  18. Martin, K.: Refined dimensions of cusp forms, and equidistribution and bias of signs. J. Number Theory 188, 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  19. Miyake, T.: Modular Forms, 2nd edn. Springer Monographs in Mathematics. Springer, Berlin, Heidelberg (2006)

  20. Müller, W.: Weyl’s law in the theory of automorphic forms. In: Katrin, T. (ed.) Groups and Analysis: The Legacy of Hermann Weyl, London Mathematical Society Lecture Note Series, vol. 354. Cambridge University Press (2008). arXiv:0710.2319

  21. Nakasuji, M.: Generalized Ramanujan conjecture over general imaginary quadratic fields. Forum Math. 24(1), 85–98 (2012)

    Article  MathSciNet  Google Scholar 

  22. Nelson, P.: Eisenstein series and the cubic moment for \(\rm PGL_2\) (2020). arXiv:1911.06310

  23. Nelson, P., Pitale, A., Saha, A.: Bounds for Rankin–Selberg integrals and quantum unique ergodicity for powerful levels. J. Am. Math. Soc. 27(1), 147–191 (2013)

    Article  MathSciNet  Google Scholar 

  24. Sarnak, P.: The arithmetic and geometry of some hyperbolic three manifolds. Acta Math. 151, 253–295 (1983)

    Article  MathSciNet  Google Scholar 

  25. Siegel, C.: Die Funktionalgleichung einiger Dirichletscher Reihen. Math. Z. 63, 363–373 (1956)

    Article  MathSciNet  Google Scholar 

  26. Siegel, C.: Lectures on advanced analytic number theory. Tata Institute Bombay (1961) (reissued 1965)

  27. Soundararajan, K., Young, M.P.: The prime geodesic theorem. Journal für die reine und angewandte Mathematik 2013(676), 105–120 (2013)

    Article  MathSciNet  Google Scholar 

  28. Sugiyama, S., Tsuzuki, M.: An explicit trace formula of Jacquet–Zagier type for Hilbert modular forms. J. Funct. Anal. 275(11), 2978–3064 (2018)

    Article  MathSciNet  Google Scholar 

  29. Szmidt, J.: The Selberg trace formula for the Picard group \({{\rm SL}}(2, \mathbb{Z}[i])\). Acta Arith. 42(4), 391–424 (1983)

    Article  MathSciNet  Google Scholar 

  30. Vignéras, M.-F.: Variété riemanniennes isospectrales et non isométriques. Ann. Math. 112, 21–32 (1980)

    Article  MathSciNet  Google Scholar 

  31. Wu, H.: Deducing Selberg trace formula via Rankin–Selberg method for \(\rm GL_2\). Trans. Am. Math. Soc. 372(12), 8507–8551 (2019)

    Article  Google Scholar 

  32. Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. In: Modular Functions of One Variable, VI, Proc. 2nd Internat. Conf. (Bonn 1976), Lecture Notes in Mathematics, vol. 627. Springer, Berlin (1977)

  33. Zagier, D.: Eisenstein series and the Selberg trace formula. I. In: Automorphic Forms, Representation Theory and Arithmetic, no. 10 in Tata Inst. Fund. Res. Stud. Math. pp. 303–355. Springer, Berline, New York (1981)

Download references

Acknowledgements

H.Wu would like to thank the Rényi institute, EPFL, the IMS at NUS and QMUL for providing stimulating working conditions during the preparation of this paper, and the support of the Leverhulme Trust Research Project Grant RPG-2018-401. G.Zábrádi was supported by the MTA Rényi Intézet Lendület Automorphic Research Group, by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, and by the NKFIH Research Grant FK-127906, and by Project ED 18-1-2019-0030 (Application-specific highly reliable IT solutions) under the Thematic Excellence Programme funding scheme. G. Cherubini was supported by the project PRIMUS/20/SCI/002 from Charles University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Finiteness properties

Appendix: Finiteness properties

We shall prove Proposition 2.17. Recall by [9, Theorem 2.7] that \(\Gamma \backslash \mathbb {H}_3\) has a fundamental domain given by a Poincaré normal polyhedron \({\mathcal {P}}_Q(\Gamma )\) for some \(Q=rj \in \mathbb {H}_3\) with \(r \ge 1\).

Definition 6.1

For any \(P \in {\mathcal {P}}_Q(\Gamma )\), write

$$\begin{aligned} {\mathcal {L}}(P) := \{ Q_1 \in \Gamma .Q: d(P,Q_1) = d(P,Q) \}. \end{aligned}$$

The following lemma is geometrically intuitive. We leave the detail of the proof to the reader.

Lemma 6.2

We can distinguish the position of a point \(P \in {\mathcal {P}}={\mathcal {P}}_Q(\Gamma )\) as follows.

  1. (1)

    P lies in the interior of \({\mathcal {P}}_Q(\Gamma )\) iff \({\mathcal {L}}(P) = \{ Q \}\) is reduced to a single point.

  2. (2)

    P lies in the interior of a face \({\mathcal {S}}\) in \(\partial {\mathcal {P}}_Q(\Gamma )\) iff \({\mathcal {L}}(P) = \{ Q, \gamma .Q \}\) with a unique \(1 \ne \gamma \in \Gamma \). The geodesic linking \(Q,\gamma .Q\) is perpendicular to \({\mathcal {S}}\).

  3. (3)

    P lies in the interior of an edge \({\mathfrak {s}}\) in \(\partial {\mathcal {P}}_Q(\Gamma )\) iff \({\mathcal {L}}(P)\) is a set of at least three points, all lying in a geodesic plane perpendicular to \({\mathfrak {s}}\).

  4. (4)

    P is a vertex of \({\mathcal {P}}_Q(\Gamma )\) iff \({\mathcal {L}}(P)\) is not contained in any geodesic plane.

Corollary 6.3

If \(P \in {\mathcal {P}}\) as above is in the case (k) and \(\gamma \in \Gamma \) such that \(\gamma .P \in {\mathcal {P}}\), then \(\gamma .P\) is also in the case (k), \(k=1,2,3,4\).

Proof

We must have \(\gamma .Q \in {\mathcal {L}}(P)\) in this case. Now if \(\gamma '.Q \in {\mathcal {L}}(P)\), then

$$\begin{aligned} d(\gamma .P, \gamma \gamma '.Q) = d(P, \gamma '.Q) = d(P,Q) = d(\gamma .P,\gamma .Q) \ge d(\gamma .P,Q) \ge d(P,Q), \end{aligned}$$

we must have equality everywhere, proving that \(\gamma .{\mathcal {L}}(P) \subset {\mathcal {L}}(\gamma .P)\). Exchanging the roles of P and \(\gamma .P\), we get \(\gamma ^{-1}{\mathcal {L}}(\gamma .P) \subset {\mathcal {L}}(P)\). Hence \({\mathcal {L}}(\gamma .P) = \gamma .{\mathcal {L}}(P)\). The nature of \({\mathcal {L}}(\gamma .P)\) is the same as \({\mathcal {L}}(P)\). \(\square \)

Proof of Proposition 2.17

Let \([\gamma _0]\) be an elliptic conjugacy class in \(\Gamma \). Let \(\ell _0\) be the geodesic invariantly fixed by a representative \(\gamma _0\). We may assume \(P_0 \in \ell _0 \cap {\mathcal {P}}_Q(\Gamma )\) exists. \(P_0\) can not lie in the interior of \({\mathcal {P}}\).

  1. (1)

    If \(P_0\) lies in the interior of a face \({\mathcal {S}}_0\), we have \({\mathcal {L}}(P_0)=\{ Q, \gamma .Q \}\). Then from

    $$\begin{aligned} d(P_0,Q) = d(\gamma _0^n.P_0,Q) = d(P_0,\gamma _0^{-n}.Q), \forall n \in \mathbb {Z} \end{aligned}$$

    we deduce that \(\gamma _0^n \in \{ 1,\gamma \}\), hence \(\gamma = \gamma _0\) is cyclic of order 2. Thus \(\gamma _0\) is the rotation about the axis \(\ell _0\) of angle \(\pi \). Consequently, \(\ell _0\) and the geodesic linking Q and \(\gamma _0.Q\) lie in a geodesic plane and they are perpendicular with each other. Hence \(\ell _0\) lies in the geodesic plane containing \({\mathcal {S}}_0\). As the rotation \(\gamma _0\) must map the interior of \({\mathcal {S}}_0\) into itself by Corollary 6.3, \(\ell _0\) must be an axis of symmetry of the hyperbolic polygon \({\mathcal {S}}_0\).

  2. (2)

    If \(P_0\) lies in the interior of an edge \({\mathfrak {s}}_0\), and if \(\ell _0\) does not contain \({\mathfrak {s}}_0\), then \(P_0\) must be the middle point of \({\mathfrak {s}}_0\) and \(\gamma _0\) is a rotation of angle \(\pi \), since \(\gamma _0\) maps the interior of \({\mathfrak {s}}_0\) into itself by Corollary 6.3. We also have \(\gamma _0 {\mathcal {L}}(P_0) = {\mathcal {L}}(P_0)\) by the proof of Corollary 6.3, hence \(\ell _0\) is an axis of symmetry of the polygon determined by \({\mathcal {L}}(P_0)\). If \(\ell _0\) does contain \({\mathfrak {s}}_0\), then \(\gamma _0\) is a rotation about \({\mathfrak {s}}_0\) which permutes \({\mathcal {L}}(P_0)\), since we still have \(\gamma _0 {\mathcal {L}}(P_0) = {\mathcal {L}}(P_0)\).

  3. (3)

    If \(P_0\) is a vertex of \({\mathcal {P}}\), we claim that there exist \(P_1 \in \ell _0\) and \(\gamma \in \Gamma \) such that \(\gamma .P_1 \in {\mathcal {P}}\) is not a vertex, hence we can replace \(\gamma _0\) resp. \(P_0\) with \(\gamma \gamma _0 \gamma ^{-1}\) resp. \(P_1\) and reduce to the previous cases. In fact, otherwise, the orbits of the vertices under \(\Gamma \), which is countably many, would cover \(\ell _0\), which is uncountably many. Contradiction.

We have shown that up to conjugation by elements of \(\Gamma \), \(\gamma _0\) is

  • either a rotation of angle \(\pi \) about an axis of symmetry of a face of \({\mathcal {P}}\);

  • or a rotation of angle \(\pi \) about an axis of symmetry of the polygon determined by \({\mathcal {L}}(P_0)\), where \(P_0\) is the middle point of an edge of \({\mathcal {P}}\);

  • or a rotation about an edge of \({\mathcal {P}}\), which permutes \({\mathcal {L}}(P_0)\) for any \(P_0\) lying in the interior of that edge.

Hence there are only finitely many options for \(\gamma _0\) and we conclude the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherubini, G., Wu, H. & Zábrádi, G. On Kuznetsov–Bykovskii’s formula of counting prime geodesics. Math. Z. 300, 881–928 (2022). https://doi.org/10.1007/s00209-021-02808-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02808-5

Keywords

Mathematics Subject Classification

Navigation