Skip to main content
Log in

Geometric structures on the complement of a toric mirror arrangement

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study geometric structures on the complement of a toric mirror arrangement associated with a root system. Inspired by those root system hypergeometric functions found by Heckman–Opdam, and in view of the work of Couwenberg–Heckman–Looijenga on the geometric structures on projective arrangement complements, we consider a family of connections on a total space, namely, a \({\mathbb {C}}^{\times }\)-bundle on the complement of a toric mirror arrangement (=finite union of hypertori, determined by a root system). We prove that these connections are torsion free and flat, and hence define a family of affine structures on the total space, which is equivalent to a family of projective structures on the toric arrangement complement. We then determine a parameter region for which the projective structure admits a locally complex hyperbolic metric. In the end, we show that the space in question can be biholomorphically mapped onto a divisor complement of a ball quotient if the Schwarz conditions are invoked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allcock, D., Carlson, J.A., Toledo, D.: The complex hyperbolic geometry of the moduli space of cubic surfaces. J. Algebr. Geom. 11(4), 659–724 (2002)

    Article  MathSciNet  Google Scholar 

  2. Barthel, G., Hirzebruch, F., Höfer, T.: Geradenkonfigurationen und algebraische Flächen. (Configurations of lines and algebraic surfaces). Eine Veröffentlichung des Max-Planck-Instituts für Mathematik, Bonn., volume D4. Springer, Wiesbaden, (1987)

  3. Bourbaki, N.: Groupes et Algèbres de Lie, Chapitres 4,5 et 6. Number 1337 in Actualités Scientifiques et Industrielles. Hermann, Paris, (1968)

  4. Brieskorn, E.: Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe. Invent. Math. 12, 57–61 (1971)

    Article  MathSciNet  Google Scholar 

  5. Couwenberg, W.: Complex reflection groups and hypergeometric functions. PhD thesis, University of Nijmegen, (1994)

  6. Couwenberg, W., Heckman, G., Looijenga, E.: Geometric structures on the complement of a projective arrangement. Publ. Math. Inst. Hautes Études Sci. 101, 69–161 (2005)

    Article  MathSciNet  Google Scholar 

  7. Couwenberg, W., Heckman, G., Looijenga, E.: On the geometry of the Calogero–Moser system. Indag. Math., New Ser. 16(3–4), 443–459 (2005)

    Article  MathSciNet  Google Scholar 

  8. Coxeter, H.S.M.: Regular complex polytopes. 2nd ed. New York etc.: Cambridge University Press, 2nd ed. edition, (1991)

  9. Curtis, C.W., Iwahori, N., Kilmoyer, R.: Hecke algebras and characters of parabolic type of finite groups with (B, N)-pairs. Publ. Math., Inst. Hautes Étud. Sci. 40, 81–116 (1971)

    Article  MathSciNet  Google Scholar 

  10. Deligne, P.: Equations différentielles à points singuliers réguliers, vol. 163. Springer, Cham (1970)

    Book  Google Scholar 

  11. Deligne, P., Mostow, G.D.: Monodromy of hypergeometric functions and non-lattice integral monodromy. Publ. Math. Inst. Hautes Études Sci. 63, 5–89 (1986)

    Article  Google Scholar 

  12. Heckman, G.J.: Root systems and hypergeometric functions. II. Compos. Math. 64, 353–373 (1987)

    MathSciNet  MATH  Google Scholar 

  13. Heckman, G.J., Opdam, E.M.: Root systems and hypergeometric functions. I. Compos. Math. 64, 329–352 (1987)

    MathSciNet  MATH  Google Scholar 

  14. Heckman, G., Looijenga, E.: Hyperbolic structures and root systems. In Casimir force, Casimir operators and Riemann hypothesis. Mathematics for innovation in industry and science. Proceedings of the conference, Fukuoka, Japan, November 9–13, 2009, pages 211–228. Berlin: de Gruyter, (2010)

  15. Kohno, T.: Integrable connections related to Manin and Schechtman’s higher braid groups. Ill. J. Math. 34(2), 476–484 (1990)

    MathSciNet  MATH  Google Scholar 

  16. Kondō, S.: A complex hyperbolic structure for the moduli space of curves of genus three. J. Reine Angew. Math. 525, 219–232 (2000)

    Article  MathSciNet  Google Scholar 

  17. Looijenga, E.: Arrangements, KZ systems and Lie algebra homology. In Singularity theory. Proceedings of the European singularities conference, Liverpool, UK, August 18–24, 1996. Dedicated to C. T. C. Wall on the occasion of his 60th birthday, pages 109–130. Cambridge: Cambridge University Press, (1999)

  18. Looijenga, E.: Compactifications defined by arrangements. I: The ball quotient case. Duke Math. J. 118(1), 151–187 (2003)

    Article  MathSciNet  Google Scholar 

  19. Looijenga, E.: Artin groups and the fundamental groups of some moduli spaces. J. Topol. 1(1), 187–216 (2008)

    Article  MathSciNet  Google Scholar 

  20. Mostow, G.D.: Generalized Picard lattices arising from half-integral conditions. Publ. Math., Inst. Hautes Étud. Sci. 63, 91–106 (1986)

    Article  MathSciNet  Google Scholar 

  21. Opdam, E.M.: Root systems and hypergeometric functions. III. Compos. Math. 67(1), 21–49 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Opdam, E.M.: Root systems and hypergeometric functions. IV. Compos. Math. 67(2), 191–209 (1988)

    MathSciNet  MATH  Google Scholar 

  23. Shen, D.: Computation for the paper “geometric structures on the complement of a toric mirror arrangement". available at https://dalishen.wixsite.com/math/research

  24. Shen, D.: Hyperbolic structures on a toric arrangement complement. PhD thesis, Utrecht University, (2015). available at https://dspace.library.uu.nl/handle/1874/306092

  25. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274–304 (1954)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to my PhD supervisors: to Eduard Looijenga for his patient guidance during my PhD time, including but not only on this work; to Gert Heckman for taking me to walk around in this beautiful subject. I also thank Frits Beukers, Pierre Py, Jasper Stokman and Ian Strachan for their valuable comments on the earlier version of this paper. The referees’ helpful suggestions are appreciated as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dali Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, D. Geometric structures on the complement of a toric mirror arrangement. Math. Z. 300, 683–744 (2022). https://doi.org/10.1007/s00209-021-02771-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02771-1

Keywords

Mathematics Subject Classification

Navigation