Skip to main content
Log in

Statistical stability for diffeomorphisms with mostly expanding and mostly contracting centers

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For partially hyperbolic diffeomorphisms with mostly expanding and mostly contracting centers, we establish a topological structure, called skeleton—a set consisting of finitely many hyperbolic periodic points with maximal cardinality for which there exist no heteroclinic intersections. We build the one-to-one corresponding between periodic points in any skeleton and physical measures. By making perturbations on skeletons, we study the continuity of physical measures with respect to dynamics under \(C^1\)-topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We say that f is a \(C^{1+}\) diffeomorphism if it is \(C^1\) and Df is Hölder continuous.

  2. The union of the basins of all physical measures has a full Lebesgue measure.

  3. Meaning that \(T_x\gamma \oplus E^{cs}(x)=T_xM\) for every \(x\in \gamma \).

  4. For two physical measures \(\mu \) and \(\nu \) with respect to f, we say that they are intermingled if \(\mathrm{Leb}(U\cap B(\mu ,f))>0\) and \(\mathrm{Leb}(U\cap B(\nu ,f))>0\) for any open set U of M.

  5. \(E_g(x)\) and \(F_g(x)\) depend continuously on g and x. In particular, \(E_f(x)=E(x)\) and \(F_f(x)=F(x)\) for every \(x\in M\). Sometimes, we drop the reference to g for simplicity.

  6. By the result of [17, Proposition 2.8], \(h^*(f,x,r)\) is measurable and f-invariant.

  7. Notice that in the proofs of lemmas in this section, we use neither the mostly expanding behavior nor the mostly contracting behavior on centers.

  8. \(G^u(PH^{1}_{EC}(M))=\left\{ (f,\mu ): \mu \in G^u(f), f\in PH^{1}_{EC}(M)\right\} \).

References

  1. Alves, J.: SRB measures for non-hyperbolic systems with multidimensional expansion. Ann. Sci. Ecole Norm. Sup. (4) 33(1), 1–32 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, J.: Strong statistical stability of non-uniformly expanding maps. Nonlinearity 17(4), 1193–1215 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves, J., Pinheiro, V.: Topological structure of (partially) hyperbolic sets with positive volume. Trans. Am. Math. Soc. 360, 5551–5569 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alves, J., Viana, M.: Statistical stability for robust classes of maps with non-uniform expansion. Ergod. Theory Dyn. Syst. 22(1), 1–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alves, J., Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140, 351–398 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andersson, M.: Robust ergodic properties in partially hyperbolic dynamics. Trans. Am. Math. Soc. 362, 1831–1867 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andersson, M., Vasquez, C.: On mostly expanding diffeomorphisms. Ergod. Theory Dyn. Syst. 38, 2838–2859 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Andersson, M., Vasquez, C.: Statistical stability of mostly expanding diffeomorphisms. Ann. Inst. H. Poincaré Anal. Non Linéaire 37(6), 1245–1270 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barreira, L., Pesin, Y.: Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  10. Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Isr. J. Math. 115, 157–193 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonatti, C., Diaz, L., Viana, M.: Dynamics beyond uniform hyperbolicity, A global geometric and probabilistic perspective, Encyclopaedia of Mathematical Sciences, vol. 102. Mathematical Physics, III. Springer, Berlin (2005)

  12. Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer Lectures Notes in Mathematics (1975)

  13. Bowen, R., Ruelle, D.: The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brin, M., Garrett, S.: Introduction to Dynamical Systems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  15. Burns, K., Dolgopyat, D., Pesin, Y., Pollicott, M.: Stable ergodicity for partially hyperbolic attractors with negative central exponents. J. Mod. Dyn. 2, 63–81 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Buzzi, J., Crovisier, S., Sarig, O.: Measures of maximal entropy for surface diffeomorphisms. arXiv:1811.02240

  17. Cao, Y., Yang, D.: On Pesin’s entropy formula for dominated splittings without mixed behavior. J. Differ. Equ. 261, 3964–3986 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cao, Y., Mi, Z., Yang, D.: On the abundance of SRB measures. arXiv:1804.03328

  19. Cao, Y., Liao, G., You, Z.: Upper bounds on measure theoretic tail entropy for dominated splittings. Ergod. Theory Dyn. Syst. 40, 2305–2316 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Castro, A.A.: Backward inducing and exponential decay of correlations for partially hyperbolic attractors with mostly contracting central direction. Isr. J. Math. 130, 29–75 (2002)

    Article  Google Scholar 

  21. Castro, A.A.: Fast mixing for attractors with a mostly contracting central direction. Ergod. Theory Dyn. Syst. 24, 17–44 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Catsigeras, E., Enrich, H.: SRB-like measures for \(C^0\) dynamics. Bull. Pol. Acad. Sci. Math. 59, 151–164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Catsigeras, E., Cerminara, M., Enrich, H.: The Pesin entropy formula for \(C^1\) diffeomorphisms with dominated splitting. Ergod. Theory Dyn. Syst. 35, 737–761 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  24. Cheng, C., Gan, S., Shi, Y.: A robustly transitive diffeomorphism of Kan’s type. Discrete Contin. Dyn. Syst. 38(2), 867–888 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cowieson, W., Young, L.-S.: SRB measures as zero-noise limits. Ergod. Theory Dyn. Syst. 25(4), 1115–1138 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Crovisier, S., Yang, D., Zhang, J.: Empirical measures of partially hyperbolic attractors. Commun. Math. Phys. 375, 725–764 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dolgopyat, D.: On dynamics of mostly contracting diffeomorphisms. Commun. Math. Phys. 213, 181–201 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dolgopyat, D., Viana, M., Yang, J.: Geometric and measure-theoretical structures of maps with mostly contracting center. Commun. Math. Phys. 341, 991–1014 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gan, S.: A generalized shadowing lemma. Discrete Contin. Dyn. Syst. 8(3), 627–632 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gan, S., Yang, F., Yang, J., Zheng, R.: Statistical properties of physical-like measures. Nonlinearity 34(2), 1014–1029 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hertz, R., Rodriguez Hertz, M.A., Tahzibi, A., Ures, R.: New criteria for ergodicity and nonuniform hyperbolicity. Duke Math. J. 160, 599–629 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Hirsch, M.W., Pugh, C., Shub, M.: Invariant manifolds, Lecture Notes in Mathematics, vol. 583. Springer (1977)

  34. Hu, H., Hua, Y., Wu, W.: Unstable entropies and variational principle for partially hyperbolic diffeomorphisms. Adv. Math. 321, 31–68 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hua, Y., Yang, F., Yang, J.: A new criterion of physical measures for partially hyperbolic diffeomorphisms. Trans. Am. Math. Soc. 373(1), 385–417 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kan, I.: Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin. Bull. Am. Math. Soc. 31(1), 68–74 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ledrappier, F.: Propriétés ergodiques des mesures de Sinaï. Publ. Math. I.H.E.S. 59, 163–188 (1984)

    Article  MATH  Google Scholar 

  38. Ledrappier, F., Strelcyn, J.: A proof of the estimation from below in Pesin’s entropy formula. Ergod. Theory Dyn. Syst. 2, 203–219 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ledrappier, F., Young, L.-S.: The metric entropy of difeomorphisms. Part I: characterization of measures satisfying Pesin’s entropy formula. Ann. Math. 122, 509–539 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liao, S.: On \((\eta, d)\)-contractible orbits of vector fields. Syst. Sci. Math. Sci. 2, 193–227 (1989)

    MathSciNet  MATH  Google Scholar 

  41. Mehdipour, P., Tahzibi, A.: SRB measures and homoclinic relation for endomorphisms. J. Stat. Phys. 163(1), 139–155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mi, Z.: Random entropy expansiveness for diffeomorphism with dominated splittings. Stoch. Dyn. 20(1), 2050014 (2020)

  43. Mi, Z., Cao, Y., Yang, D.: A note on partially hyperbolic systems with mostly expanding centers. Proc. Am. Math. Soc. 145(12), 5299–5313 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Okunev, A.: Milnor attractors of skew products with the fiber a circle. J. Dyn. Control Syst. 23, 421–433 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Palis, J.: A global view of dynamics and a conjecture on the denseness of finitude of attractors. Astérisque 261, 339–351 (1999)

    Google Scholar 

  46. Pesin, Y., Sinai, Y.: Gibbs measures for partially hyperbolic attractors. Ergod. Theory Dyn. Syst. 2, 417–438 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pliss, V.: On a conjecture due to Smale. Diff. Uravenenija 8, 262–268 (1972)

    Google Scholar 

  48. Ruelle, D.: An inequality of the entropy of differentiable maps. Bol. Sc. Bra. Math. 9, 83–87 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ruelle, D.: A measure associated with Axiom A attractors. Am. J. Math. 98, 619–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ruelle, D.: Differentiation of SRB states. Commun. Math. Phys. 187, 227–241 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sinai, Y.: Gibbs measures in ergodic theory. Russ. Math. 27(4), 21–69 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ures, R., Viana, M., Yang, J.: Maximal entropy measures of diffeomorphisms of circle fiber bundles. arXiv:1909.00219

  53. Vásquez, C.: Statistical stability for diffeomorphisms with dominated splitting. Ergod. Theory Dyn. Syst. 27, 253–283 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Viana, M., Yang, J.: Physical measures and absolute continuity for one-dimensional center direction. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 845–877 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yang, J.: Entropy along expanding foliations. arXiv:1601.05504v1

  56. Yang, J.: Geometrical and measure-theoretic structures of maps with mostly expanding center. arXiv:1904.10880v1

  57. Young, L.-S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108, 733–754 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  58. Walters, P.: An Introduction to Ergodic Theory. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Yang and R. Zou for their suggestions and discussions. We also thank the anonymous referees who helped us to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongluo Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Z. Mi would like to thank the support of NSFC 11801278. Y. Cao would like to thank the support of NSFC (11790274, 11771317) and Science and Technology Commission of Shanghai Municipality (No. 18dz2271000).

Appendix A: Proof of Proposition 3.5

Appendix A: Proof of Proposition 3.5

Thanks to the Pliss-Like Lemma founded by Andersson–Vasquez [8, Lemma A], which implies the following result(see [18, Lemma 5.8]).

Lemma A.1

Given constants \(C_1<C_2\le \max \{0,C_2\}<C\), for any \(\varepsilon >0\), there is \(\rho =\rho (C_1,C_2,C,\varepsilon )>0\) such that for any sequence \(\{a_n\}_{n\in \mathbb {N}}\subset \mathbb {R}\) satisfying:

  • \(|a_n|\le C\), \(\forall n\in \mathbb {N}\),

  • there is a subset \(P\subset \mathbb {N}\) such that \(\mathcal {D}_{L}(P)>1-\rho \) and \(a_n\le C_1\) for any \(n\in P\),

then there is a subset \(Q \subset \mathbb {N}\) with \(\mathcal {D}_{U}(Q)>1-\varepsilon \) such that for any \(j\in Q\), one has that

$$\begin{aligned} \sum _{i=0}^{n-1}a_{i+j}\le nC_2,~~~\forall n\in \mathbb {N}. \end{aligned}$$

The following lemma plays a key role in the proof of Proposition 3.5.

Lemma A.2

Let f be a \(C^1\) diffeomorphism with dominated splitting \(TM=E\oplus F\). Given \(0<\alpha <\alpha _0\), if \(\mu \) is an f-invariant measure such that

$$\begin{aligned}&\lim _{n\rightarrow +\infty }\frac{1}{n}\log \Vert Df^{-n}|_{E(x)}\Vert <-\alpha _0, \quad \mu -a.e. ~x\in M; \end{aligned}$$
(A.1)
$$\begin{aligned}&\lim _{n\rightarrow +\infty }\frac{1}{n}\log \Vert Df^{n}|_{F(x)}\Vert <-\alpha _0, \quad \mu -a.e. ~x\in M. \end{aligned}$$
(A.2)

Then, for every \(\varepsilon >0\) there exists \(\ell \in \mathbb {N}\) and a neighborhood \(\mathcal {U}\times \mathcal {V}\) of \((f,\mu )\) such that for every \(g\in \mathcal {U}\) and g-invariant measure \(\nu \in \mathcal {V}\), we have

$$\begin{aligned} \nu \left( \Lambda _{\ell }(g,\alpha ,E,F)\right) >1-\varepsilon . \end{aligned}$$

Proof

For simplicity, for every g that is \(C^1\)-close to f, we introduce the two blocks \(\Lambda _{\ell }^{-}(g,\alpha )\) and \(\Lambda _{\ell }^{+}(g, \alpha )\) defined as follows:

$$\begin{aligned} \Lambda _{\ell }^{-}(g, \alpha )= & {} \left\{ x: \frac{1}{n\ell }\sum _{i=0}^{n-1}\log \Vert Dg^{-\ell }|_{E(g^{-i\ell }(x))}\Vert \le -\alpha , \quad \forall n\in \mathbb {N}\right\} ;\\ \Lambda _{\ell }^{+}(g,\alpha )= & {} \left\{ x: \frac{1}{n\ell }\sum _{i=0}^{n-1}\log \Vert Dg^{\ell }|_{F(g^{i\ell }(x))}\Vert \le -\alpha ,\quad \forall n\in \mathbb {N}\right\} . \end{aligned}$$

Hence, \(\Lambda _{\ell }(g,\alpha )=\Lambda _{\ell }^{-}(g, \alpha )\cap \Lambda _{\ell }^{+}(g,\alpha )\). Given \(n\in \mathbb {N}\), let us define

$$\begin{aligned} \Lambda ^E_{g,n}= & {} \left\{ x: \frac{1}{n}\log \Vert Dg^{-n}|_{E(x)}\Vert<-\alpha _0 \right\} ;\\ \Lambda ^F_{g,n}= & {} \left\{ x: \frac{1}{n}\log \Vert Dg^{n}|_{F(x)}\Vert <-\alpha _0 \right\} . \end{aligned}$$

Take \(\Lambda _{g,n}=\Lambda ^E_{g,n}\cap \Lambda ^F_{g,n}\).

Choose \(\varepsilon '>0\) satisfying \((1-\varepsilon ')^2>1-\varepsilon /2\) and fix constants

$$\begin{aligned} C_1=-\alpha _0, \quad C_2=-\alpha , \quad C=\max _{x\in M}|\log \Vert Df^{\pm 1}|_{E(x)}\Vert |+1. \end{aligned}$$

Then take \(\rho =\rho (C_1,C_2,C,\varepsilon )\) as in Lemma A.1. It follows from (A.1) and (A.2) that for \(0<\rho \varepsilon '<1\), there exists \(\ell \in \mathbb {N}\) such that \(\mu (\Lambda _{f,\ell })>1-\rho \varepsilon '\). By the continuity of diffeomorphisms and [8, Lemma 3.2], there exists an open neighborhood \(\mathcal {U}\times \mathcal {V}\) of \((f,\mu )\) such that

$$\begin{aligned} \nu (\Lambda _{g,\ell })>1-\rho \varepsilon '. \end{aligned}$$
(A.3)

Moreover, we can assume \(\max _{x\in M}|\log \Vert Dg^{\pm 1}|_{E(x)}\Vert |\le C\) for every \(g\in \mathcal {U}\).

Take any \(g\in \mathcal {U}\) and g-invariant measure \(\nu \) in \(\mathcal {V}\). Hence, we have \(\nu (\Lambda ^E_{g,\ell })>1-\rho \varepsilon '\), \(\nu (\Lambda ^F_{g,\ell })>1-\rho \varepsilon '\).

Since \(\nu \) is \(g^{\ell }\)-invariant, by Birkhoff’s ergodic theorem we get that for \(\nu \)-almost every \(x\in M\), there exists the limit

$$\begin{aligned} \phi (x)=\lim _{n\rightarrow +\infty }\frac{1}{n}\# \left\{ i: 0 \le i \le n-1, g^{-\ell i}(x) \in \Lambda ^E_{g,\ell } \right\} . \end{aligned}$$

Furthermore, applying (A.3) we have

$$\begin{aligned} \int \phi (x)d\nu = \nu (\Lambda ^E_{g,\ell })>1-\rho \varepsilon '. \end{aligned}$$
(A.4)

Let \( G=\left\{ x: 1-\rho <\phi (x)\le 1\right\} \), we claim that \(\nu (G)>1-\varepsilon '\). Indeed, observe that \( M\setminus G = \{x: \rho \le 1-\phi (x) \le 1\}, \) this together with (A.4) imply

$$\begin{aligned} \rho \varepsilon '> \int (1-\phi )d\nu \ge \int (1-\phi )\chi _ {M\setminus G}d\nu \ge \rho \nu (M\setminus G). \end{aligned}$$

Thus, \(\nu (G)>1-\varepsilon '\). For any \(x\in G\), we define

$$\begin{aligned} a_i=\frac{1}{\ell }\log \Vert Dg^{-\ell }|_{E(g^{-i\ell }x)}\Vert ,\quad \forall i\ge 0, \end{aligned}$$

and

$$\begin{aligned} P=\{i\ge 0: g^{-i\ell }(x)\in \Lambda ^E_{g,\ell }\}. \end{aligned}$$

Then, by properties of \(\Lambda ^E_{g,\ell }\) and G, one has that \(a_i<-\alpha \) for every \(i\in P\), and \(\mathcal {D}_{L}(P)>1-\rho \). Thus, by applying Lemma A.1, there exists a subset \(Q\subset \mathbb {N}\) with density estimate

$$\begin{aligned} \mathcal {D}_{U}(Q)>1-\varepsilon '. \end{aligned}$$
(A.5)

Moreover, for every \(j\in Q\), we have

$$\begin{aligned} \sum _{i=0}^{n-1}a_{i+j}\le -n\alpha , \quad \forall n\in \mathbb {N}, \end{aligned}$$

which can be rewrite as

$$\begin{aligned} \prod _{i=0}^{n-1}\Vert Dg^{-\ell }|_{E(g^{-{i+j}\ell }(x))}\Vert \le \mathrm{e}^{-n\ell \alpha }, \quad \forall n\in \mathbb {N}. \end{aligned}$$

Therefore, by combining (A.5) with Birkhoff’s ergodic theorem we know that for \(\nu \)-almost every \(x\in G\),

$$\begin{aligned} \lim _{n\rightarrow +\infty }\frac{1}{n}\#\left\{ i\in [0,n-1]: g^{-i\ell }(x)\in \Lambda _{\ell }^{-}(g,\alpha )\right\} >1-\varepsilon '. \end{aligned}$$

Therefore, there exists \(n_0\in \mathbb {N}\) and a subset

$$\begin{aligned} G_{0}=\left\{ x\in G: \frac{1}{n_0}\#\left\{ i\in [0, n_0-1]: g^{-i\ell }(x)\in \Lambda _{\ell }^{-}(g,\alpha )\right\} >1-\varepsilon ' \right\} \end{aligned}$$

satisfying \(\nu (G_0)>1-\varepsilon '\). Then, we have

$$\begin{aligned} \nu (\Lambda _{\ell }^{-}(g,\alpha ))= & {} \int \frac{1}{n_0}\sum _{i=0}^{n_0-1}\chi _{\Lambda _{\ell }^{-}(g,\alpha )}(g^{-i\ell }x)d\nu \\\ge & {} \int _{G_0} \frac{1}{n_0}\sum _{i=0}^{n_0-1}\chi _{\Lambda _{\ell }^{-}(g,\alpha )}(g^{-i\ell }x)d\nu \\= & {} \int _{G_0} \frac{1}{n_0}\#\left\{ i\in [0, n_0-1]: g^{-i\ell }(x)\in \Lambda _{\ell }^{-}(g,\alpha )\right\} d\nu \\\ge & {} (1-\varepsilon ')\nu (G_0)\\> & {} (1-\varepsilon ')^2>1-\varepsilon /2. \end{aligned}$$

Similarly, for F direction one can get \(\nu (\Lambda _{\ell }^{-}(g,\alpha ))>1-\varepsilon /2\). Therefore,

$$\begin{aligned} \nu (\Lambda _{\ell }(g,\alpha ))>1-\varepsilon . \end{aligned}$$

The proof of Lemma A.2 is complete. \(\square \)

By Lemma 2.8, one can conclude the following result. It can be derived from [43, Lemma 3.4] and [43, Lemma 3.5].

Lemma A.3

If \(f\in PH^1_{EC}(M)\), then there exist \(N\in \mathbb {N}\) and \(\beta >0\) such that for every \(\mu \in G^u(f)\), one has

$$\begin{aligned} \lim _{n\rightarrow +\infty } \frac{1}{n}\sum _{i=0}^{n-1}\log \Vert Df^{-N}|_{E^{cu}(f^{-iN}(x))}\Vert <-\beta \end{aligned}$$

for \(\mu \)-almost every x.

Now we can finish the proof of Proposition 3.5.

Proof of Proposition 3.5

By Lemma A.3, there exist \(N\in \mathbb {N}\) and \(\beta >0\) such that for every \(\mu \in G^u(f)\) and \(\mu \)-almost every x, we have

$$\begin{aligned} \lim _{n\rightarrow +\infty } \frac{1}{n}\sum _{i=0}^{n-1}\log \Vert Df^{-N}|_{E^{cu}(f^{-iN}(x))}\Vert <-\beta . \end{aligned}$$

By taking \(\alpha _{0}=\beta /N\), we get that for \(\mu \)-almost every x, it has that

$$\begin{aligned} \lim _{n\rightarrow +\infty }\frac{1}{n}\log \Vert Df^{-n}|_{E^{cu}(x)}\Vert <-\alpha _0. \end{aligned}$$

Following the same argument, up to reducing \(\alpha _0\), for any Gibbs u-state \(\mu \) and \(\mu \)-almost every x, we have

$$\begin{aligned} \lim _{n\rightarrow +\infty }\frac{1}{n}\log \Vert Df^{n}|_{E^{cs}(x)}\Vert <-\alpha _{0}. \end{aligned}$$

Now fix \(\alpha \in (0,\alpha _0)\). By Lemma A.2, for every \(\varepsilon >0\), for any \(\mu \in G^u(f)\), there exists \(\ell _{\mu }\in \mathbb {N}\) and neighborhood \(\mathcal {U}_{\mu }\times \mathcal {V}_{\mu }\) of \((f,\mu )\) in \(G^u(PH^{1}_{EC}(M))\)Footnote 8 such that

$$\begin{aligned} \nu (\Lambda _{\ell _{\mu }}(g, \alpha ))>1-\varepsilon \end{aligned}$$
(A.6)

for every \((g,\nu )\in \mathcal {U}_{\mu }\times \mathcal {V}_{\mu }\). By compactness of \(G^u(f)\) as stated in Item (1) of Lemma 2.8, there exist finitely many Gibbs u-states \(\mu _1,\ldots ,\mu _j\) such that the corresponding neighborhoods \(\mathcal {V}_i{:}{=}\mathcal {V}_{\mu _i}, 1\le i \le j\) form a covering of \(G^u(f)\). Writing \(\mathcal {U}_i{:}{=}\mathcal {U}_{\mu _i}\) and \(\ell _i{:}{=}\ell _{\mu _i}\) for every \(1\le i \le j\). Let

$$\begin{aligned} \mathcal {U}=\bigcap _{1\le i \le j} \mathcal {U}_i; \quad \mathcal {V}=\bigcup _{1\le i\le j}\mathcal {V}_i;\quad \ell =\prod _{i=1}^j \ell _j. \end{aligned}$$

Note that by definition of \(\ell \), we have \(\Lambda _{\ell _i}(g,\alpha )\subset \Lambda _{\ell }(g,\alpha )\) for every \(1\le i \le j\). By Lemma 2.9, up to shrinking \(\mathcal {U}\) we assume \(G^u(g)\subset \mathcal {V}\) for every \(g\in \mathcal {U}\). Therefore, for every \((g,\nu )\in \mathcal {U}\times \mathcal {V}\), there is some \(1\le i\le j\) such that \((g,\nu )\in \mathcal {U}_i\times \mathcal {V}_i\), and thus (A.6) implies \(\nu (\Lambda _{\ell }(g,\alpha ))>1-\varepsilon \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Z., Cao, Y. Statistical stability for diffeomorphisms with mostly expanding and mostly contracting centers. Math. Z. 299, 2519–2560 (2021). https://doi.org/10.1007/s00209-021-02766-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02766-y

Keywords

Mathematics Subject Classification

Navigation