Skip to main content
Log in

Surfaces that are covered by two pencils of circles

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We list up to Möbius equivalence all possible degrees and embedding dimensions of real surfaces that are covered by at least two pencils of circles, together with the number of such pencils. In addition, we classify incidences between the contained circles, complex lines and isolated singularities. Such geometric characteristics are encoded in the Néron–Severi lattices of such surfaces and is of potential interest to geometric modelers and architects. As an application we confirm Blum’s conjecture in higher dimensional space and we address the Blaschke–Bol problem by classifying surfaces that are covered by hexagonal webs of circles. In particular, we find new examples of such webs that cannot be embedded in 3-dimensional space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baez, J.C. Blog for azimuth project: planets in the fourth dimension (2015). https://johncarlosbaez.wordpress.com/2015/03/17/planets_in_the_4th_dimension/

  2. Bastl, B., Jüttler, B., Lávicka, M., Schulz, T., Šír, Z.: On the parameterization of rational ringed surfaces and rational canal surfaces. Math. Comput. Sci. 8, 299–319 (2014)

    Article  MathSciNet  Google Scholar 

  3. Benzerga, M.: Real structures on rational surfaces and automorphisms acting trivially on Picard groups. Math. Z. 282(3–4), 1127–1136 (2016)

    Article  MathSciNet  Google Scholar 

  4. Berger, M.: Geometry Revealed: A Jacob’s Ladder to Modern higher Geometry. Springer, Berlin (2010). (978-3-540-70996-1)

    Book  Google Scholar 

  5. Blaschke, W., Bol, G.: Geometrie der Gewebe. Topologische Fragen der Differentialgeometrie. J. W. Edwards, Ann Arbor (1944)

    MATH  Google Scholar 

  6. Blum, R.: Circles on surfaces in the Euclidean \(3\)-space. In Geometry and differential geometry (Proc. Conf., Univ. Haifa, 1979), volume 792 of Lecture Notes in Mathematics. Springer, pp. 213–221 (1980)

  7. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbol. Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  8. Burnett, D.G.: Descartes and the hyperbolic quest: lens making machines and their significance in the seventeenth century. Trans. Am. Philos. Soc. 95(3), i-152 (2005)

    Article  Google Scholar 

  9. Coolidge, J.: A Treatise on the Circle and Sphere. Oxford University Press, Oxford (1916)

    MATH  Google Scholar 

  10. Dolgachev, I.V.: Classical Algebraic Geometry: A Modern View. Cambridge University Press, Cambridge (2012). (978-1-107-01765-8)

    Book  Google Scholar 

  11. Dreibelbis, D. https://www.unf.edu/~ddreibel/research/blum.html

  12. Eisenbud, D., Harris, J.: 3264 and All That Second Course in Algebraic Geometry. Cambridge University Press, Cambridge (2016). (ISBN 978-1-139-06204-6)

    Book  Google Scholar 

  13. Fuchs, D., Tabachnikov, S.: Mathematical omnibus: thirty lectures on classical mathematics. Am. Math. Soc. 20, 20 (2007)

    MATH  Google Scholar 

  14. Graf, H., Sauer, R.: Über dreifache Geradensysteme. Math. Nat. Abt. 20, 119–156 (1924)

    MATH  Google Scholar 

  15. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  16. Hartshorne, R.: Algebraic Geometry. Springer, Berlin (1977)

    Book  Google Scholar 

  17. Kollár, J.: Lectures on Resolution of Singularities, vol. 166. Princeton University Press, New York (2007). (978-0-691-12923-5)

    MATH  Google Scholar 

  18. Kollár, J.: Quadratic solutions of quadratic forms. Local and Global Methods in Algebraic Geometry, Volume 712 of Contemporary Mathematics, pp. 211–249. American Mathematical Society, Providence (2018)

    Chapter  Google Scholar 

  19. Krasauskas, R., Zubė, S.: Rational Bézier formulas with quaternion and Clifford algebra weights. SAGA–Advances in ShApes, Geometry, and Algebra, pp. 147–166. Springer, Berlin (2014). (ISBN 978-3-319-08634-7)

    Chapter  Google Scholar 

  20. Lazarsfeld, R.: Positivity in Algebraic Geometry. I, vol. 48. Springer, Berlin (2004). (ISBN 3-540-22533-1)

    Book  Google Scholar 

  21. Lubbes, N.: Computing basepoints of linear series in the plane (2018a). arXiv:1805.03452

  22. Lubbes, N.: Sage library for constructing and visualizing curves on surfaces (2018b)

  23. Lubbes, N.: Webs of rational curves on real surfaces and a classification of real weak del Pezzo surfaces. J. Lond. Math. Soc. II. Ser (2018c). https://doi.org/10.1112/jlms.12379

    Article  MATH  Google Scholar 

  24. Lubbes, N., Schicho, J.: Kinematic generation of Darboux cyclides. Comput. Aided Geom. Design 64, 11–14 (2018)

    Article  MathSciNet  Google Scholar 

  25. Milnor, J.: Singular Points of Complex Hypersurfaces. Annals of Mathematics Studies, No. 61. Princeton University Press, New York (1968)

    Google Scholar 

  26. Nilov, F.: On new constructions in the Blaschke–Bol problem. Sb. Math. 205, 1650–1667 (2014)

    Article  MathSciNet  Google Scholar 

  27. Nilov, F., Skopenkov, M.: A surface containing a line and a circle through each point is a quadric. Geom. Dedic. 163, 301–310 (2013)

    Article  MathSciNet  Google Scholar 

  28. Penrose, R.: The road to reality. A complete guide to the laws of the universe. Alfred A, Knopf Inc (2005)

  29. Povray. Persistence of Vision Pty. Ltd. (2004). www.povray.org

  30. Peternell, M.: Rational families of conics and quadrics. Math. Surf. 8, 20 (2001)

    Google Scholar 

  31. Pottmann, H., Asperl, A., Hofer, M., Kilian, A.: Architectural Geometry. Bentley Institute Press, Exton (2007). (ISBN 978-1-934493-04-5)

    Google Scholar 

  32. Pottmann, H., Shi, L., Skopenkov, M.: Darboux cyclides and webs from circles. Comput. Aided Geom. Design 29(1), 77–97 (2012)

    Article  MathSciNet  Google Scholar 

  33. Schicho, J.: The multiple conical surfaces. Beitr. Alg. Geom. 42, 71–87 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Serre, J.-P.: Topics in Galois theory. Jones and Bartlett Publishers, Burlington (1992). (ISBN 0-86720-210-6)

    MATH  Google Scholar 

  35. Silhol, R.: Real Algebraic Surfaces. Springer, Berlin (1989)

    Book  Google Scholar 

  36. Skopenkov, M., Krasauskas, R.: Surfaces containing two circles through each point. Math. Ann. 373, 3–4 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Stein, W.A., et al.: Sage Mathematics Software. The Sage Development Team (2012). www.sagemath.org

  38. Takeuchi, N.: A closed surface of genus one in \(E^3\) cannot contain seven circles through each point. Proc. Am. Math. Soc. 100(1), 145–147 (1987)

    MATH  Google Scholar 

  39. Takeuchi, N.: Cyclides. Hokkaido Math. J. 29(1), 119–148 (2000)

    Article  MathSciNet  Google Scholar 

  40. Villarceau, Y.: Theoreme sur le tore. Nouvelles annales de mathematiques 7, 345–347 (1848). http://eudml.org/doc/95880

  41. Wall, C.T.C.: Real forms of smooth del Pezzo surfaces. J. Reine Angew. Math. 375(376), 47–66 (1987)

    MathSciNet  MATH  Google Scholar 

  42. Wren, C.: Generatio corporis cylindroidis hyperbolici, elaborandis lenti bus hyperbolicis accommodati. Philos. Trans. R. Soc. Lond. 4, 961–962 (1669)

    Google Scholar 

Download references

Acknowledgements

I would like to thank R. Krasauskas, H. Pottmann, J. Schicho, M. Skopenkov and S. Zubė for the inspiring discussions, which have have been invaluable for this paper. In particular, the detailed comments of M. Skopenkov were extremely helpful. I thank J. Kollár for interesting historical remarks. The computations were done using [37, Sage] and [7, Magma]. The images were made using [29, Povray]. This research was supported by base funding of the King Abdullah University of Science and Technology (KAUST) and by the Austrian Science Fund (FWF) project P33003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Lubbes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by base funding of the King Abdullah University of Science and Technology (KAUST) and by the Austrian Science Fund (FWF) project P33003.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubbes, N. Surfaces that are covered by two pencils of circles. Math. Z. 299, 1445–1472 (2021). https://doi.org/10.1007/s00209-021-02713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02713-x

Keywords

Mathematics Subject Classification

Navigation