Skip to main content
Log in

Singular loci of reflection arrangements and the containment problem

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

This paper provides insights into the role of symmetry in studying polynomial functions vanishing to high order on an algebraic variety. The varieties we study are singular loci of hyperplane arrangements in projective space, with emphasis on arrangements arising from complex reflection groups. We provide minimal sets of equations for the radical ideals defining these singular loci and study containments between the ordinary and symbolic powers of these ideals. Our work ties together and generalizes results in Bauer et al. (Int Math Res Not IMRN 24:7459–7514, 2019), Dumnicki et al. (J Algebra 393:24–29, 2013), Harbourne and Seceleanu (J Pure Appl Algebra 219(4):1062–1072, 2015) and Malara and Szpond (J Pure Appl Algebra 222(8):2323–2329, 2018) under a unified approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bauer, Th, Di Rocco, S., Harbourne, B., Huizenga, J., Lundman, A., Pokora, P., Szemberg, T.: Bounded Negativity and Arrangements of Lines. Int. Math. Res. Not. IMRN 19, 9456–9471 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bauer, Th, Di Rocco, S., Harbourne, B., Huizenga, J., Seceleanu, A., Szemberg, T.: Negative curves on symmetric blowups of the projective plane, resurgences and Waldschmidt constants. Int. Math. Res. Not. IMRN 24, 7459–7514 (2019)

    Article  MathSciNet  Google Scholar 

  3. Bocci, C., Harbourne, B.: Comparing powers and symbolic powers of ideals. J. Algebraic Geom. 19(3), 399–417 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bauer, Th, Di Rocco, S., Harbourne, B., Kapustka, M., Knutsen, A.L., Syzdek, W., Szemberg, T.: A primer on Seshadri constants, interactions of classical and numerical algebraic geometry. Contemp. Math. 496, 33–70 (2009)

    Article  Google Scholar 

  5. Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math. 77(4), 778–782 (1955)

    Article  MathSciNet  Google Scholar 

  6. Derksen, H., Sidman, J.: Castelnuovo-Mumford regularity by approximation. Adv. Math. 188(1), 104–123 (2004)

    Article  MathSciNet  Google Scholar 

  7. Dumnicki, M., Harbourne, B., Nagel, U., Seceleanu, A., Szemberg, T., Tutaj-Gasińska, H.: Resurgences for ideals of special point configurations in \(\mathbb{P}^N\)coming from hyperplane arrangements. J. Algebra 443, 383–394 (2015)

    Article  MathSciNet  Google Scholar 

  8. Dumnicki, M., Szemberg, T., Tutaj-Gasińska, H.: Counterexamples to the \(I^{(3)}\subseteq I^2\) containment. J. Algebra 393, 24–29 (2013)

    Article  MathSciNet  Google Scholar 

  9. Ein, L., Lazarsfeld, R., Smith, K.: Uniform behavior of symbolic powers of ideals. Invent. Math. 144, 241–252 (2001)

    Article  MathSciNet  Google Scholar 

  10. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics 150. Springer, New York (1995)

    Google Scholar 

  11. Engheta, B.: On the projective dimension and the unmixed part of three cubics. J. Algebra 316(2), 715–734 (2007)

    Article  MathSciNet  Google Scholar 

  12. Grifo, E.: A Stable Version of Harbourne’s Conjecture and the Containment Problem for Space Monomial Curves, preprint (2018). arXiv:1809.06955

  13. Grifo, E., Huneke, C., Mukundan, V.: Expected resurgences and symbolic powers of ideals. J. Lond.Math. Soc. (2021) (to appear)

  14. Harbourne, B., Seceleanu, A.: Containment counterexamples for ideals of various configurations of points in \(\mathbb{P}^N\). J. Pure Appl. Algebra 219(4), 1062–1072 (2015)

    Article  MathSciNet  Google Scholar 

  15. Harbourne, B., Huneke, H.: Are symbolic powers highly evolved? J. Ramanujan Math. Soc. 28(3), 311–330 (2013). Special Issue

    MathSciNet  MATH  Google Scholar 

  16. Herzog, J.: A Homological Approach to Symbolic Powers, Commutative Algebra, Lecture Notes in Mathematics, vol. 1430, pp. 32–46. Springer, New York (1990)

    Google Scholar 

  17. Hochster, M., Huneke, C.: Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147(2), 349–369 (2002)

    Article  MathSciNet  Google Scholar 

  18. Huneke, C.: Linkage and the Koszul homology of ideals. Am. J. Math. 104(5), 1043–1062 (1982)

    Article  MathSciNet  Google Scholar 

  19. Ma, L., Schwede, K.: Perfectoid multiplier/test ideals in regular rings and bounds on symbolic powers. Invent. Math. 214(2), 913–955 (2018)

    Article  MathSciNet  Google Scholar 

  20. Malara, G., Szpond, J.: Fermat-type configurations of lines in \(\mathbb{P}^3\) and the containment problem. J. Pure Appl. Algebra 222(8), 2323–2329 (2018)

    Article  MathSciNet  Google Scholar 

  21. Malara, G., Spond, J.: On Codimension two Flats in Fermat-type Arrangements, Springer Proc. Math. Stat., vol. 238. Springer, Cham (2018)

    Google Scholar 

  22. Orlik, P., Terao, H.: Arrangement of Hyperplanes, Grundlerhen der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300. Springer, Berlin (1992)

    Google Scholar 

  23. Nagel, U., Seceleanu, A.: Ordinary and symbolic Rees algebras for ideals of Fermat point configurations. J. Algebra 468, 80–102 (2016)

    Article  MathSciNet  Google Scholar 

  24. Nguy\(\tilde{\hat{\text{e}}}\)n, T.T.: The Least Generating Degree of Symbolic Powers of Ideals of Fermat Configuration of Points, preprint (2021). arXiv:2101.12308

  25. Nguy\(\tilde{\hat{\text{ e }}}\)n, T.T.: The Least Generating Degree of Symbolic Powers of Fermat-like Ideals of Planes and Lines Arrangements, preprint (2021). arXiv:2102.01182

  26. Seceleanu, A.: A homological criterion for the failure of containment between symbolic and ordinary powers of ideals of points in \(\mathbb{P}^2\). J. Pure Appl. Algebra 219(11), 4857–4871 (2015)

    Article  MathSciNet  Google Scholar 

  27. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274–304 (1954)

    Article  MathSciNet  Google Scholar 

  28. Steinberg, R.: Invariants of finite reflection groups. Can. J. Math. 12, 616–618 (1960)

    Article  MathSciNet  Google Scholar 

  29. Steinberg, R.: Differential equations invariant under finite reflection groups. Trans. Am. Math. Soc. 112, 392–400 (1964)

    Article  MathSciNet  Google Scholar 

  30. Swanson, I.: Linear equivalence of ideal topologies. Math. Z. 234(4), 755–775 (2000)

    Article  MathSciNet  Google Scholar 

  31. Szpond, J.: Fermat-type Arrangements, preprint (2019). arXiv:1909.04089

  32. Terao, H.: Arrangements of hyperplanes and their freeness I. J. Fac. Sci. Univ. Tokyo 27, 293–320 (1980)

    MathSciNet  MATH  Google Scholar 

  33. Ulrich, B.: Artin-Nagata properties and reductions of ideals. Contemp. Math. 159, 373–400 (1994)

    Article  MathSciNet  Google Scholar 

  34. Walker, R.M.: Uniform Harbourne-Huneke Bounds via Flat Extensions. J. Algebra 516, 124–148 (2018)

    Article  MathSciNet  Google Scholar 

  35. Ziegler, G.: Algebraic Combinatorics of Hyperplane Arrangements, Ph.D. thesis, Massachusetts Institute of Technology (1987)

Download references

Acknowledgements

We thank Eloísa Grifo, Jack Jeffries and Tomasz Szemberg for useful comments. We acknowledge Thai Nguy\(\tilde{\hat{\text {e}}}\)n for pointing out an error in a previous version of the proof of Proposition 6.3. The authors acknowledge the support of NSF grant DMS-1601024 and EpSCOR award OIA-1557417 throughout the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Seceleanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drabkin, B., Seceleanu, A. Singular loci of reflection arrangements and the containment problem. Math. Z. 299, 867–895 (2021). https://doi.org/10.1007/s00209-021-02701-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02701-1

Keywords

Mathematics Subject Classification

Navigation