Skip to main content
Log in

Valuation rings are derived splinters

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We give three proofs that valuation rings are derived splinters: a geometric proof using absolute integral closure, a homological proof which reduces the problem to checking that valuation rings are splinters (which is done in the second author’s PhD thesis and which we reprise here), and a proof by approximation which reduces the problem to Bhatt’s proof of the derived direct summand conjecture. The approximation property also shows that smooth algebras over valuation rings are splinters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The degree of a finite algebra over a field is its vector space dimension over the field.

  2. This is not standard terminology, but it is the notion we need. More common, for example as in [33, Sec. VI.1], is the notion of p-closed field where it is required that K have no Galois extensions of degree p (or equivalently of degree \(p^n\) for \(n>0\)). A p-separably closed field is p-closed since non-trivial field extensions do not admit sections, but the converse is not generally true. For example, let \(\mathbb {F}_\ell \) be a finite field and fix two distinct primes \(q_1\) and \(q_2\) which are both different from p. We let \(G\cong \prod _{r}\mathbb {Z}_r\) be the absolute Galois group of \(\mathbb {F}_\ell \), where the product ranges over all primes r, and we let \(G'\subseteq G\) be the subgroup \(\prod _{r\ne q_1,q_2}\mathbb {Z}_r\). Set \(K={\overline{\mathbb {F}}}_\ell ^{G'}\). Then, K is evidently p-closed since its Galois group is \(\mathbb {Z}_{q_1}\times \mathbb {Z}_{q_2}\), but it is not p-separably closed since we can solve the equation \(mq_1+nq_2=p^a\) for some \(m,n,a>0\).

  3. We thank Linquan Ma for pointing out to us that the property of local cohomology having finitely many associated primes descends under pure maps.

  4. Universal cohesiveness of a Prüfer domain does not follow from universal cohesiveness of all its localizations by Harris’s example of a ring which is not coherent even though its local rings are all Noetherian [16, Thm. 3].

References

  1. André, Y.: La conjecture du facteur direct. Publ. Math. Inst. Hautes Études Sci. 127, 71–93 (2018)

    Article  MathSciNet  Google Scholar 

  2. Artin, M.: On the joins of Hensel rings. Adv. Math. 7(1971), 282–296 (1971)

    Article  MathSciNet  Google Scholar 

  3. Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra, Economy ed., Addison-Wesley Series in Mathematics. Westview Press, Boulder (2016)

    Google Scholar 

  4. Berthelot, P., Grothendieck, A., Illusie, L.: Théorie des intersections et théorème de Riemann-Roch. Lecture Notes in Mathematics, vol. 225. Springer, Berlin (1971)

    Book  Google Scholar 

  5. Bhatt, B.: Derived direct summands, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.)—Princeton University (2010)

  6. Bhatt, B.: Derived splinters in positive characteristic. Compos. Math. 148(6), 1757–1786 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bhatt, B.: On the direct summand conjecture and its derived variant. Invent. Math. 212(2), 297–317 (2018)

    Article  MathSciNet  Google Scholar 

  8. Bourbaki, N.: Commutative Algebra. Chapters 1–7, Elements of Mathematics. Springer, Berlin (1989) T(translated from the French, Reprint of the 1972 edition)

  9. Datta, R.: Frobenius splitting of valuation rings and \(F\)-singularities of centers. arXiv preprint arXiv:1707.01649 (2017)

  10. Datta, R.: (Non)vanishing results on local cohomology of valuation rings. J. Algebra 479, 413–436 (2017)

    Article  MathSciNet  Google Scholar 

  11. Datta, R., Smith, K.E.: Frobenius and valuation rings. Algebra Number Theory 10(5), 1057–1090 (2016)

    Article  MathSciNet  Google Scholar 

  12. de Jong, A.J.: Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ. Math. 83, 51–93 (1996)

    Article  MathSciNet  Google Scholar 

  13. Fujiwara, K., Kato, F.: Foundations of Rigid Geometry. I, EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich (2018)

    Google Scholar 

  14. Glaz, S.: Commutative Coherent Rings. Lecture Notes in Mathematics, vol. 1371. Springer, Berlin (1989)

    Book  Google Scholar 

  15. Görtz, U., Wedhorn, T.: Algebraic Geometry I, Advanced Lectures in Mathematics. Vieweg + Teubner, Wiesbaden (2010) (schemes with examples and exercises)

  16. Harris, M.E.: Some results on coherent rings. II. Glasgow Math. J. 8, 123–126 (1967)

    Article  MathSciNet  Google Scholar 

  17. Heitmann, R., Ma, L.: Big Cohen–Macaulay algebras and the vanishing conjecture for maps of Tor in mixed characteristic. Algebra Number Theory 12(7), 1659–1674 (2018)

    Article  MathSciNet  Google Scholar 

  18. Hochster, M.: Contracted ideals from integral extensions of regular rings. Nagoya Math. J. 51, 25–43 (1973)

    Article  MathSciNet  Google Scholar 

  19. Hochster, M., Huneke, C.: \(F\)-regularity, test elements, and smooth base change. Trans. Am. Math. Soc. 346(1), 1–62 (1994)

    MathSciNet  MATH  Google Scholar 

  20. Hochster, M., Huneke, C.: Applications of the existence of big Cohen–Macaulay algebras. Adv. Math. 113(1), 45–117 (1995)

    Article  MathSciNet  Google Scholar 

  21. Hochster, M., Roberts, J.L.: The purity of the Frobenius and local cohomology. Adv. Math. 21(2), 117–172 (1976)

    Article  MathSciNet  Google Scholar 

  22. Huneke, C.L., Sharp, R.Y.: Bass numbers of local cohomology modules. Trans. Am. Math. Soc. 339(2), 765–779 (1993)

    Article  MathSciNet  Google Scholar 

  23. Illusie, L., Temkin, M.: Exposé X. Gabber’s modification theorem (log smooth case), Astérisque 363–364, 167–212 (2014) Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents

  24. Kelly, S., Morrow, M.: \(K\)-theory of valuation rings. arXiv preprint arXiv:1810.12203 (2018)

  25. Kovács, S.J.: A characterization of rational singularities. Duke Math. J. 102(2), 187–191 (2000)

    Article  MathSciNet  Google Scholar 

  26. Kunz, E.: Characterizations of regular local rings of characteristic \(p\). Am. J. Math. 91, 772–784 (1969)

    Article  MathSciNet  Google Scholar 

  27. Lipman, J., Notes on Derived Functors and Grothendieck Duality, Foundations Of Grothendieck Duality for Diagrams Of Schemes, Lecture Notes in Mathematics, vol. 1960, pp. 1–259. Springer, Berlin (1960)

  28. Ma, L.: The vanishing conjecture for maps of Tor and derived splinters. J. Eur. Math. Soc. (JEMS) 20(2), 315–338 (2018)

    Article  MathSciNet  Google Scholar 

  29. Matsumura, H.: Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, vol. 8, 2nd edn. Cambridge University Press, Cambridge (1989). (translated from the Japanese by M. Reid)

    Google Scholar 

  30. Mesablishvili, B.: Pure morphisms of commutative rings are effective descent morphisms for modules—a new proof. Theory Appl. Categ. 7(3), 38–42 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Nagata, M.: Finitely generated rings over a valuation ring. J. Math. Kyoto Univ. 5, 163–169 (1966)

    MathSciNet  MATH  Google Scholar 

  32. Neeman, A.: Triangulated categories, Annals of Mathematics Studies, vol. 148. Princeton University Press, Princeton, NJ (2001)

    Book  Google Scholar 

  33. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323. Springer, Berlin (2000)

    Google Scholar 

  34. Betancourt, L.N.: Local cohomology properties of direct summands. J. Pure Appl. Algebra 216(10), 2137–2140 (2012)

    Article  MathSciNet  Google Scholar 

  35. Osofsky, B.L.: Global dimension of valuation rings. Trans. Am. Math. Soc. 127, 136–149 (1967)

    Article  MathSciNet  Google Scholar 

  36. Raynaud, M., Gruson, L.: Critères de platitude et de projectivité. Techniques de "platification" d’un module. Invent. Math. 13, 1–89 (1971)

    Article  MathSciNet  Google Scholar 

  37. Serre, J.-P.: Galois Cohomology. Springer, Berlin (1997) (translated from the French by Patrick Ion and revised by the author)

  38. Singh, A.K., Swanson, I.: Associated primes of local cohomology modules and of Frobenius powers. Int. Math. Res. Not. 33, 1703–1733 (2004)

    Article  MathSciNet  Google Scholar 

  39. Smith, K.E.: Tight closure of parameter ideals. Invent. Math. 115(1), 41–60 (1994)

    Article  MathSciNet  Google Scholar 

  40. Smith, K.E., Zhang, W.: Frobenius Splitting In Commutative Algebra, Commutative Algebra and Noncommutative Algebraic Geometry. Vol. I, Math. Sci. Res. Inst. Publ., vol. 67, pp. 291–345. Cambridge University Press, New York (2015)

    Google Scholar 

  41. The Stacks project authors, The stacks project. https://www.stacks.math.columbia.edu (2019)

  42. Temkin, M.: Inseparable local uniformization. J. Algebra 373, 65–119 (2013)

    Article  MathSciNet  Google Scholar 

  43. Temkin, M.: Tame distillation and desingularization by \(p\)-alterations. Ann. Math. (2) 186(1), 97–126 (2017)

    Article  MathSciNet  Google Scholar 

  44. Zariski, O.: Local uniformization on algebraic varieties. Ann. Math. (2) 41, 852–896 (1940)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Bhargav Bhatt, Linquan Ma, Akhil Mathew, Matthew Morrow, Takumi Murayama, Emanuel Reinecke and Kevin Tucker for helpful conversations. The first author is indebted to Elden Elmanto who pointed out [43] and suggested that Proposition 4.2.1 should be true. The second author is especially grateful to Emanuel Reinecke for numerous illuminating discussions about derived splinters and for making us aware of Fujiwara and Kato’s finiteness result (Theorem 2.3.3). Additionally, we thank Takumi and the referee for their comments. In particular, Remark 3.1.3 was added at the referee’s suggestion. The first author was supported by NSF Grant DMS-1552766.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rankeya Datta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antieau, B., Datta, R. Valuation rings are derived splinters. Math. Z. 299, 827–851 (2021). https://doi.org/10.1007/s00209-020-02683-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02683-6

Keywords

Mathematics Subject Classification

Navigation