Skip to main content

Advertisement

Log in

Decomposition of generalized O’Hara’s energies

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

O’Hara introduced several functionals as knot energies. One of them is the Möbius energy. We know its Möbius invariance from Doyle-Schramm’s cosine formula. It is also known that the Möbius energy was decomposed into three components keeping the Möbius invariance. The first component of decomposition represents the extent of bending of the curves or knots, while the second one indicates the extent of twisting. The third one is an absolute constant. In this paper, we show a similar decomposition for generalized O’Hara energies. We also extend the cosine formula for the Möbius energy to generalized O’Hara energies. It gives us a condition for which the right circle minimizes the energy under the length-constraint. Furthermore, it shows us how far the energy is from the Möbius invariant property. Using decomposition, the first and second variation formulae are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abrams, A., Cantarella, J., Fu, J.H.G., Ghomi, M., Howard, R.: Circles minimize most knot energies. Topology 42(2), 381–394 (2003)

    Article  MathSciNet  Google Scholar 

  2. Blatt, S.: The gradient flow of the Möbius energy near local minimizers. Calc. Var. Partial Differ. Equ. 43(3–4), 403–439 (2012)

    Article  MathSciNet  Google Scholar 

  3. Blatt, S.: Boundedness and regularizing effects of O’Hara’s knot energies. J. Knot Theory Ramifi. 21(1250010), 9 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Blatt, S.: The gradient flow of O’Hara’s knot energies. Math. Ann. 370(3–4), 993–1061 (2018)

    Article  MathSciNet  Google Scholar 

  5. Blatt, S., Ishizeki, A., Nagasawa, T.: A Möbius invariant discretization of O’Hara’s Möbius energy, arXiv:1809.07984

  6. Blatt, S., Ishizeki, A., Nagasawa, T.: A Möbius invariant discretization and decomposition of the Möbius energy, arXiv:1904.06818

  7. Blatt, S., Reiter, Ph, Schikorra, A.: Harmonic analysis meets critical knots. Critical points of the Möbius energy are smooth. Trans. Am. Math. Soc. 368(9), 6391–6438 (2016)

    Article  Google Scholar 

  8. Blatt, S., Reiter, Ph., Schikorra, A.: On O’hara knot energies I: Regularity for critical knots, arXiv:1905.06064

  9. Blatt, S., Vorderobermeier, N.: On the analyticity of critical points of the Möbius energy. Calc. Var. Partial Differ. Equ. 58(1), Art. 16, 28 (2019)

    Article  Google Scholar 

  10. Brylinski, J.-L.: The beta function of a knot. Int. J. Math. 10(4), 415–423 (1999)

    Article  MathSciNet  Google Scholar 

  11. Freedman, M.H., He, Z.-X., Wang, Z.: Möbius energy of knots and unknots. Ann. of Math. 139(1), 1–50 (1994)

    Article  MathSciNet  Google Scholar 

  12. Gilsbach, A., von der Mosel, H.: Symmetric critical knots for O’Hara’s energies. Topol. Appl. 242, 73–102 (2018)

    Article  MathSciNet  Google Scholar 

  13. Gunji, K.: \(L^2\) representations of the second variation and Łojasiewicz-Simon gradient estimates for a decomposition of the Möbius energy. Adv. Differ. Equ. 24(5–6), 321–376 (2019)

    MathSciNet  MATH  Google Scholar 

  14. He, Z.-H.: The Euler-Lagrange equation and heat flow for the Möbius energy. Comm. Pure Appl. Math. 53(4), 399–431 (2000)

    Article  MathSciNet  Google Scholar 

  15. Ishizeki, A., Nagasawa, T.: A decomposition theorem of the Möbius energy I: Decomposition and Möbius invariance. Kodai Math. J. 37(3), 737–754 (2014)

    Article  MathSciNet  Google Scholar 

  16. Ishizeki, A., Nagasawa, T.: A decomposition theorem of the Möbius energy II: Variational formulae and estimates. Math. Ann. 363(1–2), 617–635 (2015)

    Article  MathSciNet  Google Scholar 

  17. Ishizeki, A., Nagasawa, T.: The invariance of decomposed Möbius energies under inversions with center on curves. J. Knot Theory Ramif. 25, 1650009 (2016)

    Article  Google Scholar 

  18. Ishizeki, A., Nagasawa, T.: The \( L^2 \)-gradient of decomposed Möbius energies. Calc. Var. Partial Differ. Equ. 55(3), Art. No.56, 31 (2016)

    Article  Google Scholar 

  19. Kawakami, S.: A discretization of O’Hara energy and its convergence, arXiv:1908.11172

  20. Kawakami, S.: Two notes on the O’Hara energies. Discrete Contin. Dyn. Syst. Ser. B. https://doi.org/10.3934/dcdss.2020384

  21. Kawakami, S., Nagasawa, T.: Variational formulae and estimates of O’Hara’s energies. J. Knot Theory Ramif. 29(4), 2050017, 22 (2020)

    Article  MathSciNet  Google Scholar 

  22. Kusner, R., Sullivan, J.M.: Möbius-invariant knot energies. In: Stasiak, A., Katrich, V., Kauffman, L.H. (eds.) Ideal Knots, pp. 315–352. World Scientific, Singapore (1998)

    Chapter  Google Scholar 

  23. O’Hara, J.: Energy of a knot. Topology 30(2), 241–247 (1991)

    Article  MathSciNet  Google Scholar 

  24. O’Hara, J.: Family of energy functionals of knots. Topol. Appl. 48(2), 147–161 (1992)

    Article  MathSciNet  Google Scholar 

  25. O’Hara, J.: Energy functionals of knots II. Topol. Appl. 56(1), 45–61 (1994)

    Article  MathSciNet  Google Scholar 

  26. Okamoto, J.: Random discretization of O’Hara knot energy, arXiv:1905.06657

  27. Rawdon, E.J., Simon, J.K.: Polygonal approximation and energy of smooth knots. J. Knot Theory Ramifi. 15(4), 429–451 (2006)

    Article  MathSciNet  Google Scholar 

  28. Reiter, Ph: Regularity theory for the Möbius energy. Comm. Pure Appl. Anal. 9(5), 1463–1471 (2010)

    Article  Google Scholar 

  29. Reiter, Ph: Repulsive knot energies and pseudodifferential calculus for O’Hara’s knot energy family \( E^{(\alpha )} \), \( \alpha \in [ 2,3 ) \). Math. Nachr. 285(7), 889–913 (2012)

    Article  MathSciNet  Google Scholar 

  30. Scholtes, S.: Discrete Möbius energy. J. Knot Theory Ramif. 23, 1450045 (2014)

    Article  Google Scholar 

  31. Simon, J.K.: Energy functions for polygonal knots. J. Knot Theory Ramif. 3(3), 299–320 (1994)

    Article  MathSciNet  Google Scholar 

  32. Vorderobermeier, N.: On the regularity of critical points for O’Hara’s knot energies: From smoothness to analyticity, arXiv:1904.13129

Download references

Acknowledgements

The authors express their appreciation to Professor Jun O’Hara for providing access to [10].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aya Ishizeki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Aya Ishizeki is supported by Grant-in-Aid for JSPS Fellows (No. 17J01429) and the Takeyuki Nagasawa is supported by Grant-in-Aid for Scientific Research (C) (No. 17K05310), Japan Society for Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishizeki, A., Nagasawa, T. Decomposition of generalized O’Hara’s energies. Math. Z. 298, 1049–1076 (2021). https://doi.org/10.1007/s00209-020-02601-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02601-w

Keywords

Mathematics Subject Classification

Navigation