Skip to main content
Log in

Invariant theory for coincidental complex reflection groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

V.F. Molchanov considered the Hilbert series for the space of invariant skew-symmetric tensors and dual tensors with polynomial coefficients under the action of a real reflection group, and he speculated that it had a certain product formula involving the exponents of the group. We show that Molchanov’s speculation is false in general but holds for all coincidental complex reflection groups when appropriately modified using exponents and co-exponents. These are the irreducible well-generated (i.e., duality) reflection groups with exponents forming an arithmetic progression and include many real reflection groups and all non-real Shephard groups, e.g., the Shephard-Todd infinite family G(d, 1, n). We highlight consequences for the q-Narayana and q-Kirkman polynomials, giving simple product formulas for both, and give a q-analogue of the identity transforming the h-vector to the f-vector for the coincidental finite type cluster/Cambrian complexes of Fomin–Zelevinsky and Reading. We include the determination of the Hilbert series for the non-coincidental irreducible complex reflection groups as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Specifically, one applies the map \(\psi \mapsto d\psi \) from [28], which is the same as the map \(\psi \mapsto \tilde{\theta }_E(\psi )\) described in Sect. 4 below.

  2. The authors thank Dennis Stanton for pointing them to this identity.

References

  1. Armstrong, D.: Generalized noncrossing partitions and combinatorics of Coxeter groups. Mem. Am. Math. Soc. 202(949), (2009)

  2. Armstrong, D., Reiner, V., Rhoades, B.: Parking spaces. Adv. Math. 269, 647–706 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bessis, D., Reiner, V.: Cyclic sieving of noncrossing partitions for complex reflection groups. Ann. Comb. 15, 197–222 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Briggs, B.: Matrix factorisations arising from well-generated complex reflection groups. J. Algebra 556, 1018–1035 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Broué, M.: Introduction to complex reflection groups and their braid groups. Lecture Notes in Mathematics, vol. 1988. Springer-Verlag, Berlin (2010)

  6. Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math. 77, 778–782 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fomin, S., Reading, N.: Generalized cluster complexes and Coxeter combinatorics. Int. Math. Res. Not. , no. 44, 2709–2757 (2005)

  8. Fomin, S., Zelevinsky, A.: Y-systems and generalized associahedra. Ann. Math.(2) 158, 977–1018 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gasper, G., Rahman, M.: Basic hypergeometric series, Second edition. Encyclopedia of Mathematics and its Applications 96. Cambridge University Press, Cambridge, (2004)

  10. Gordon, I.G., Griffeth, S.: Catalan numbers for complex reflection groups. Am. J. Math. 134, 1491–1502 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grinberg, D., Reiner, V.: Hopf algebras in combinatorics, arXiv:1409.8356

  12. Gyoja, A., Nishiyama, K., Shimura, H.: Invariants for representations of Weyl groups and two-sided cells. J. Math. Soc. Jpn. 51, 1–34 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Haiman, M.D.: Conjectures on the quotient ring by diagonal invariants. J. Algebr. Combin. 3, 17–76 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hamaker, Z., Patrias, R., Pechenik, O., Williams, N.: Doppelgängers: bijections of plane partitions. Int. Math. Res. Not. , no. 2, 487-540 (2020)

  15. Hochster, M., Eagon, J.A.: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci. Am. J. Math. 93, 1020–1058 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hohlweg, C., Lange, C., Thomas, H.: Permutahedra and generalized associahedra. Adv. Math. 226, 608–640 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ito, Y., Okada, S.: On the existence of generalized parking spaces for complex reflection groups, arxiv.1508.06846

  18. Kane, R.: Reflection groups and invariant theory, CMS Books in Mathematics 5. Springer-Verlag, New York (2001)

    Book  Google Scholar 

  19. Kirillov, A.A., Pak, I.M.: Covariants of the symmetric group and its analogues in A. Weil algebras. Funktsional. Anal. i Prilozhen. 24 (1990), 9–13; translation in Funct. Anal. Appl. 24 (1990), 172–176 (1991)

  20. Koike, K.: Poincaré series on symmetric and alternating tensors for irreducible representations of imprimitive complex reflection groups. J. Algebra 169, 541–551 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford Classic Texts in the Physical Sciences, 2nd edn. The Clarendon Press, Oxford University Press, New York (2015)

    Google Scholar 

  22. Miller, A.R.: Foulkes characters for complex reflection groups. Proc. AMS 143, 3281–3293 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miller, A.R.: Walls in Milnor fiber complexes. Doc. Math. 23, 1247–1261 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Molchanov, V.F.: Poincaré series of representations of finite groups that are generated by reflections. Funktsional. Anal. i Prilozhen. 26 (1992), no. 2, 82–85; translation in Funct. Anal. Appl. 26, no. 2, 143–145 (1992)

  25. Orlik, P., Terao, H.: Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften 300. Springer-Verlag, Berlin, (1992)

  26. Orlik, P., Solomon, L.: Unitary reflection groups and cohomology. Invent. Math. 59, 77–94 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Reading, N.: Cambrian lattices. Adv. Math. 205(2), 313–353 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reiner, V., Shepler, A.V.: Invariant derivations and differential forms for reflection groups. Proc. Lond. Math. Soc. 119(2), 329–357 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reiner, V., Sommers, E.: Weyl group \(q\)-Kreweras numbers and cyclic sieving. Ann. Comb. 22, 819–874 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Saito, K., Yano, T., Sekiguchi, J.: On a certain generator system of the ring of invariants of a finite reflection group. Commun. Algebra 8, 373–408 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274–304 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shepler, A., Terao, H.: Logarithmic forms and anti-invariant forms of reflection groups, In Arrangements - Tokyo 1998, M. Falk and H. Terao, eds. (Tokyo: Mathematical Society of Japan, 2000), Adv. Stud. Pure Math., 273–278

  33. Shepler, A.: Semi-invariants of finite reflection groups. J. Algebra 220(1), 314–326 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shepler, A.: Generalized exponents and forms. J. Algebr. Combin. 22(1), 115–132 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Solomon, L.: Invariants of finite reflection groups. Nagoya Math. J. 22, 57–64 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sommers, E.: Exterior powers of the reflection representation in Springer theory. Transform. Groups 16, 889–911 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Stanley, R.P.: Relative invariants of finite groups generated by pseudoreflections. J. Algebra 49, 134–148 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stanley, R.P.: Invariants of finite groups and their applications to combinatorics. Bull. AMS 1(3), 475–511 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  39. Thibon, J.-Y.: The inner plethysm of symmetric functions and some of its applications. Bayreuth. Math. Schr. 40, 177–201 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne V. Shepler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Victor Reiner partially supported by NSF Grant DMS-1601961; Anne V. Shepler partially supported by Simons Foundation Grant #429539.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiner, V., Shepler, A.V. & Sommers, E. Invariant theory for coincidental complex reflection groups. Math. Z. 298, 787–820 (2021). https://doi.org/10.1007/s00209-020-02592-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02592-8

Keywords

Mathematics Subject Classification

Navigation