In this section we define cluster tilting subcategories of left triangulated categories. We show that when the ambient category is triangulated, then this coincides with the classical definition. Finally, we show that if a left triangulated category \({{\mathcal {C}}}\) has a \(d\mathbb {Z}\)-cluster tilting subcategory, then so does the stabilization \(\mathbb {Z}{{\mathcal {C}}}\).
Let \({{\mathcal {C}}}\) be a left triangulated category. We call a sequence in \({{\mathcal {C}}}\)
$$\begin{aligned} \Omega ^d(C_1)\xrightarrow {\alpha _{d+2}}C_{d+2}\xrightarrow {\alpha _{d+1}} C_{d+1}\xrightarrow {\alpha _{d}} \cdots \xrightarrow {\alpha _{2}} C_2\xrightarrow {\alpha _{1}} C_1 \end{aligned}$$
a \((d+2)\) -angle if there exists a diagram
where an arrow
denotes a morphism \(C'\leftarrow \Omega (C)\) in \({{\mathcal {C}}}\), each oriented triangle is a triangle in \({{\mathcal {C}}}\), each non-oriented triangle commute, and \(\alpha _{d+2}\) is equal to the composite
$$\begin{aligned} \Omega ^d(C_{1})\rightarrow \Omega ^{d-1}(C_{2.5})\rightarrow \cdots \rightarrow \Omega (C_{d.5})\rightarrow C_{d+2}. \end{aligned}$$
Note that here the symbol n.5 means \(n+0.5\). This definition of \((d+2)\)-angle differs slightly from [32], where they do not include the morphism \(\Omega ^d(C_1)\rightarrow C_{d+2}\) in the definition.
Definition 5.1
Let \({{\mathcal {C}}}\) be a left triangulated category and \(d>0\) a positive integer. A full additive subcategory \({{\mathcal {X}}}\) of \({{\mathcal {C}}}\) is d -cluster tilting if it satisfies the following:
-
(i)
\({{\mathcal {X}}}\) is closed under direct summands in \({{\mathcal {C}}}\);
-
(ii)
For all objects C in \({{\mathcal {C}}}\) there exist \((d+2)\)-angles
$$\begin{aligned} 0\rightarrow C\rightarrow X^1\rightarrow \cdots \rightarrow X^d\rightarrow 0 \end{aligned}$$
and
$$\begin{aligned} 0\rightarrow X_d\rightarrow \cdots \rightarrow X_1\rightarrow C\rightarrow 0 \end{aligned}$$
with \(X_i,X^i\in {{\mathcal {X}}}\) for \(1\le i\le d\);
-
(iii)
For C in \({{\mathcal {C}}}\) and X in \({{\mathcal {X}}}\) the map
$$\begin{aligned} {\text {Hom}}_{{{\mathcal {C}}}}(\Omega ^{i-1}(X),C)\rightarrow {\text {Hom}}_{{{\mathcal {C}}}}(\Omega ^{i}(X),\Omega (C)) \quad f\mapsto \Omega (f) \end{aligned}$$
is an isomorphism for \(1\le i\le d-1\);
-
(iv)
If X and \(X'\) are in \({{\mathcal {X}}}\), then
$$\begin{aligned} {\text {Hom}}_{{{\mathcal {C}}}}(\Omega ^i(X'),X)=0 \end{aligned}$$
for \(1\le i\le d-1\).
If furthermore \(\Omega ^d({{\mathcal {X}}})\subset {{\mathcal {X}}}\), then we say that \({{\mathcal {X}}}\) is \(d\mathbb {Z}\) -cluster tilting in \({{\mathcal {C}}}\).
We use the terminology d-cluster tilting since for an exact category \({{\mathcal {E}}}\) with enough projectives we then get a correspondence between d-cluster tilting subcategories of \({{\mathcal {E}}}\) and \({\underline{{{\mathcal {E}}}}}\), see Theorem 6.1.
Remark 5.2
We see that condition (ii) in Definition 5.1 is similar to condition (ii) in Proposition 4.4, and it can be considered as a substitute of Definition 4.1 (ii) and of functorially finiteness. The fact that it behaves much better under stabilization is also a crucial property we need.
Next we show that Definitions 5.1 and 4.1 are equivalent when \(\Omega \) is an automorphism, i.e. when \({{\mathcal {C}}}\) is triangulated. In the following we let \(\Sigma \) denote the quasi-inverse of \(\Omega \).
Proposition 5.3
A subcategory of a triangulated category \({{\mathcal {C}}}\) is d or \(d\mathbb {Z}\)-cluster tilting in the sense of Definition 5.1 if and only if it is d or \(d\mathbb {Z}\)-cluster tilting in the sense of Definition 4.1.
Proof
By Remark 4.2 (iii) the claim for \(d\mathbb {Z}\)-cluster tilting subcategories follows immediately from the claim for d-cluster tilting subcategories. Hence, we only prove the latter. Note that a d-cluster tilting subcategory in the sense of Definition 4.1 obviously satisfies (i), (iii) and (iv) in Definition 5.1, while axiom (ii) follows from [32, Corollary 3.3] and its dual. For the converse, assume \({{\mathcal {X}}}\subset {{\mathcal {C}}}\) is d-cluster tilting in the sense of Definition 5.1. As usual, for subcategories \({{\mathcal {Y}}}'\) and \({{\mathcal {Y}}}\) of \({{\mathcal {C}}}\), we denote by \({{\mathcal {Y}}}'*{{\mathcal {Y}}}\) the subcategory consisting of all \(C\in {{\mathcal {C}}}\) admitting a triangle \( Y'\rightarrow C\rightarrow Y\rightarrow \Sigma Y'\) with \(Y'\in {{\mathcal {Y}}}'\) and \(Y\in {{\mathcal {Y}}}\). By Definition 5.1 (ii) we have \({{\mathcal {C}}}=\Omega ^{d-1}{{\mathcal {X}}}*\cdots *\Omega {{\mathcal {X}}}*{{\mathcal {X}}}\). For each \(C\in {{\mathcal {C}}}\), take a triangle
$$\begin{aligned} Y\xrightarrow {f} C\xrightarrow {g} X\rightarrow \Sigma Y \end{aligned}$$
with \(Y\in \Omega ^{d-1}{{\mathcal {X}}}*\cdots *\Omega {{\mathcal {X}}}\) and \(X\in {{\mathcal {X}}}\). Since \({\text {Hom}}_{{{\mathcal {C}}}}(Y,{{\mathcal {X}}})=0\) by Definition 5.1 (iv), g is a left \({{\mathcal {X}}}\)-approximation and hence \({{\mathcal {X}}}\) is covariantly finite. Moreover, if \({\text {Hom}}_{{{\mathcal {C}}}}(\Omega ^iX,C)=0\) for \(1\le i\le d-1\), then \(f=0\) and hence \(C\in {{\mathcal {X}}}\). Since \({\text {Hom}}_{{{\mathcal {C}}}}({{\mathcal {X}}},\Sigma ^iX)=0\) for \(1\le i\le d-1\) and \(X\in {{\mathcal {X}}}\) by Definition 5.1(iv), this shows that
$$\begin{aligned} {{\mathcal {X}}}= \{C\in {{\mathcal {C}}}\mid {\text {Hom}}_{{{\mathcal {C}}}}({{\mathcal {X}}},\Sigma ^iC)=0 \text { for }1\le i\le d-1\}. \end{aligned}$$
The fact that \({{\mathcal {X}}}\) is contravariantly finite and the equality
$$\begin{aligned} {{\mathcal {X}}}= \{C\in {{\mathcal {C}}}\mid {\text {Hom}}_{{{\mathcal {C}}}}(C,\Sigma ^i({{\mathcal {X}}}))=0 \text { for }1\le i\le d-1\} \end{aligned}$$
is shown dually. \(\square \)
Recall that the stabilization \(\mathbb {Z}{{\mathcal {C}}}\) of a left triangulated category \({{\mathcal {C}}}\) is a triangulated category, see Theorem 3.4.
Definition 5.4
Let \({{\mathcal {C}}}\) be a left triangulated category and \({{\mathcal {X}}}\) a \(d\mathbb {Z}\)-cluster tilting subcategory of \({{\mathcal {C}}}\). Define \(d\mathbb {Z}{{\mathcal {X}}}\) to be the full subcategory of \(\mathbb {Z}{{\mathcal {C}}}\) consisting of all objects isomorphic to objects of the form (X, dk) with \(X\in {{\mathcal {X}}}\) and \(k\in \mathbb {Z}\).
Our goal is to show that \(d\mathbb {Z}{{\mathcal {X}}}\) is \(d\mathbb {Z}\)-cluster tilting in \(\mathbb {Z}{{\mathcal {C}}}\).
Lemma 5.5
The subcategory \(d\mathbb {Z}{{\mathcal {X}}}\) is closed under direct summands.
Proof
Two objects (C, n) and \((C',n')\) are isomorphic in \(\mathbb {Z}{{\mathcal {C}}}\) if and only if there exists an integer k such that \(\Omega ^{k+n}(C)\) and \(\Omega ^{k+n'}(C')\) are isomorphic in \({{\mathcal {C}}}\). Hence, \(d\mathbb {Z}{{\mathcal {X}}}\) consists of all objects (C, n) such that there exists an integer k with \(\Omega ^{dk+n}(C)\in {{\mathcal {X}}}\). Now assume that
$$\begin{aligned} (C_1,n_1)\oplus (C_2,n_2)\in d\mathbb {Z}{{\mathcal {X}}}. \end{aligned}$$
Choose \(n:=\min (n_1,n_2)\). Then \((C_1,n_1)\cong (\Omega ^{n_1-n}(C_1),n)\) and \((C_2,n_2)\cong (\Omega ^{n_2-n}(C_2),n)\), and hence
$$\begin{aligned} (C_1,n_1)\oplus (C_2,n_2)\cong (\Omega ^{n_1-n}(C_1)\oplus \Omega ^{n_2-n}(C_2),n)\in d\mathbb {Z}{{\mathcal {X}}}. \end{aligned}$$
Therefore there exists an integer k such that
$$\begin{aligned} \Omega ^{dk+n_1}(C_1)\oplus \Omega ^{dk+n_2}(C_2)\in {{\mathcal {X}}}. \end{aligned}$$
Since \({{\mathcal {X}}}\) is closed under direct summands by Definition 5.1(i), we have that
$$\begin{aligned} \Omega ^{dk+n_1}(C_1)\in {{\mathcal {X}}}\quad \text {and} \quad \Omega ^{dk+n_2}(C_2)\in {{\mathcal {X}}}\end{aligned}$$
and hence
$$\begin{aligned} (C_1,n_1)\in d\mathbb {Z}{{\mathcal {X}}}\quad \text {and} \quad (C_2,n_2)\in d\mathbb {Z}{{\mathcal {X}}}. \end{aligned}$$
This proves the claim. \(\square \)
Lemma 5.6
If \((X,dn)\in d\mathbb {Z}{{\mathcal {X}}}\) and \((X',dn')\in d\mathbb {Z}{{\mathcal {X}}}\), then
$$\begin{aligned} {\text {Hom}}_{\mathbb {Z}{{\mathcal {C}}}}(\Omega ^i(X,dn),(X',dn'))=0 \end{aligned}$$
for \(1\le i\le d-1\)
Proof
We have that
$$\begin{aligned} {\text {Hom}}_{\mathbb {Z}{{\mathcal {C}}}}(\Omega ^i(X,dn),(X',dn')) = {\text {colim}}_{k'} {\text {Hom}}_{{{\mathcal {C}}}}(\Omega ^i(\Omega ^{k'+dn}(X)),\Omega ^{k'+dn'}(X')). \end{aligned}$$
But
$$\begin{aligned} {\text {Hom}}_{{{\mathcal {C}}}}(\Omega ^i(\Omega ^{dk+dn}(X)),\Omega ^{dk+dn'}(X'))=0 \end{aligned}$$
for all k such that \(dk+dn>0\) and \(dk+dn'>0\) by Definition 5.1 (iv), since \(\Omega ^{dk+dn}(X)\in {{\mathcal {X}}}\) and \(\Omega ^{dk'+dn}(X')\in {{\mathcal {X}}}\). Hence, the colimit must be 0, which proves the claim. \(\square \)
Theorem 5.7
Let \({{\mathcal {C}}}\) be a left triangulated category and \({{\mathcal {X}}}\) a \(d\mathbb {Z}\)-cluster tilting subcategory of \({{\mathcal {C}}}\). Then \(d\mathbb {Z}{{\mathcal {X}}}\) is a \(d\mathbb {Z}\)-cluster tilting subcategory of the triangulated category \(\mathbb {Z}{{\mathcal {C}}}\).
Proof
We show that \(d\mathbb {Z}{{\mathcal {X}}}\) satisfies Definition 5.1. Note that axiom (i) and (iv) follows from Lemmas 5.5 and 5.6 respectively, and axiom (iii) is clear since \(\mathbb {Z}{{\mathcal {C}}}\) is a triangulated category. It therefore only remains to show axiom (ii). Let \((C,n)\in \mathbb {Z}{{\mathcal {C}}}\) be arbitrary. Choose k such that \(dk<n\). Then we have an isomorphism \((C,n)\cong (\Omega ^{n-dk}(C),dk)\). Hence, we can assume for simplicity that \(n=dk\). Now choose \((d+2)\)-angles
$$\begin{aligned}&0\rightarrow C\rightarrow X^1\rightarrow \cdots X^d\rightarrow 0 \\&0\rightarrow X_d\rightarrow \cdots \rightarrow X_1\rightarrow C\rightarrow 0 \end{aligned}$$
in \({{\mathcal {C}}}\) with \(X_i,X^i\in {{\mathcal {X}}}\) for \(1\le i\le d\). Applying Axiom (T3) in Definition 3.1 repeatedly, we obtain \((d+2)\)-angles
$$\begin{aligned}&0\rightarrow \Omega ^{dk}(C)\rightarrow \Omega ^{dk}(X^1)\rightarrow \cdots \Omega ^{dk}(X^d)\rightarrow 0 \\&0\rightarrow \Omega ^{dk}(X_d)\rightarrow \cdots \rightarrow \Omega ^{dk}(X_1)\rightarrow \Omega ^{dk}(C)\rightarrow 0 \end{aligned}$$
in \({{\mathcal {C}}}\). But they give \((d+2)\)-angles
$$\begin{aligned}&0\rightarrow (C,dk)\rightarrow (X^1,dk)\rightarrow \cdots (X^d,dk)\rightarrow 0 \\&0\rightarrow (X_d,dk)\rightarrow \cdots \rightarrow (X_1,dk)\rightarrow (C,dk)\rightarrow 0 \end{aligned}$$
in \(\mathbb {Z}{{\mathcal {C}}}\), which prove the claim. \(\square \)
Remark 5.8
Note that the proof of Theorem 5.7 does not use axiom (iii) in Definition 5.1. This axiom is needed to prove Theorem 6.1 (and in particular Lemma 6.4) to get a correspondence between \(d\mathbb {Z}\)-cluster tilting subcategories in the exact category \({{\mathcal {E}}}\) and in the left triangulated category \({\underline{{{\mathcal {E}}}}}\)
The category \(d\mathbb {Z}{{\mathcal {X}}}\) is also equivalent to the stabilization of \({{\mathcal {X}}}\) with respect to the functor
$$\begin{aligned} \Omega ^d:{{\mathcal {X}}}\rightarrow {{\mathcal {X}}}. \end{aligned}$$
Hence, it can be computed without describing the categories \({{\mathcal {C}}}\) and \(\mathbb {Z}{{\mathcal {C}}}\), which is more complicated to do in general.
Since \(d\mathbb {Z}{{\mathcal {X}}}\) is a \(d\mathbb {Z}\)-cluster tilting subcategory of \(\mathbb {Z}{{\mathcal {C}}}\), it has the structure of a \((d+2)\)-angulated category [16, Theorem 4.1], where
$$\begin{aligned} \Sigma ^d:d\mathbb {Z}{{\mathcal {X}}}\rightarrow d\mathbb {Z}{{\mathcal {X}}}\quad \Sigma ^d(X,nd)=(X,n(d-1)) \end{aligned}$$
is the suspension functor (see (3.3)) applied d times. The \((d+2)\)-angles in the sense of [16] are all \((d+2)\)-angles in \(\mathbb {Z}{{\mathcal {C}}}\) in our sense
$$\begin{aligned} \Omega ^d(E_1)\xrightarrow {\alpha _{d+2}} E_{d+2}\xrightarrow {\alpha _{d+1}}E_{d+1}\xrightarrow {\alpha _{d}}\cdots \xrightarrow {\alpha _{1}}E_{1} \end{aligned}$$
where \(E_i\in d\mathbb {Z}{{\mathcal {X}}}\) for \(1\le i\le d+2\).
Lemma 5.9
A sequence
$$\begin{aligned} \Omega ^d(X_1,dn_1)\rightarrow (X_{d+2},dn_{d+2})\xrightarrow {}(X_{d+1},dn_{d+1})\xrightarrow {} \cdots \xrightarrow {}(X_{1},dn_{1}) \end{aligned}$$
in \(d\mathbb {Z}{{\mathcal {X}}}\) with \(X_i\in {{\mathcal {X}}}\) for \(1\le i\le d+2\) is a \((d+2)\)-angle if and only if it is induced from a sequence in \({{\mathcal {C}}}\) of the form
$$\begin{aligned} \Omega ^{d(k+n_1+1)}(X_1)\xrightarrow {u_{d+2}}\Omega ^{d(k+n_{d+2})}(X_{d+2})\xrightarrow {u_{d+1}}\cdots \xrightarrow {u_1} \Omega ^{d(k+n_1)}(X_1) \end{aligned}$$
where
$$\begin{aligned} \Omega ^{d(k+n_1+1)}(X_1)\xrightarrow {(-1)^{dk}u_{d+2}}\Omega ^{d(k+n_{d+2})}(X_{d+2})\xrightarrow {(-1)^{dk}u_{d+1}}\cdots \xrightarrow {(-1)^{dk}u_1} \Omega ^{d(k+n_1)}(X_1) \end{aligned}$$
is a \((d+2)\)-angle in \({{\mathcal {C}}}\).
Proof
This follows immediately from the description of the triangles in \(\mathbb {Z}{{\mathcal {C}}}\) together with axiom (T3) in Definition 3.1. \(\square \)