Skip to main content
Log in

Subsolution theorem and the Dirichlet problem for the quaternionic Monge–Ampère equation

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we obtain the existence of solution to the Dirichlet problem for quaternionic Monge–Ampère equation. After showing a stability theorem, we prove the subsolution theorem for quaternionic Monge–Ampère equation by combining our stability theorem and Kołodziej’s approach for the complex case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alesker, S.: Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables. Bull. Sci. Math. 127(1), 1–35 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Alesker, S.: Quaternionic Monge–Ampère equations. J. Geom. Anal. 13(2), 205–238 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Alesker, S.: Valuations on convex sets, non-commutative determinants, and pluripotential theory. Adv. Math. 195, 561–595 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Alesker, S.: Pluripotential theory on quaternionic manifolds. J. Geom. Phys. 62(5), 1189–1206 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Alesker, S.: Solvability of the quaternionic Monge–Ampère equation on compact manifolds with a flat hyper Kähler metric. Adv. Math. 241, 192–219 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Alesker, S., Shelukhin, E.: On a uniform estimate for the quaternionic Calabi problem. Isr. J. Math. 197(1), 309–327 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Alesker, S., Shelukhin, E.: A uniform estimate for general quaternionic Calabi problem (with an appendix by Daniel Barlet). Adv. Math. 316, 1–52 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Alesker, S., Verbitsky, M.: Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry. J. Geom. Anal. 16, 375–399 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Alesker, S., Verbitsky, M.: Quaternionic Monge–Ampère equation and Calabi problem for HKT-manifolds. Isr. J. Math. 176, 109–138 (2010)

    MATH  Google Scholar 

  10. Baston, R.J.: Quaternionic complexes. J. Geom. Phys. 8(1–4), 29–52 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Bedford, E.: Survey of pluri-potential theory. In: Several Complex Variables (Stockholm, 1987/1988), Math. Notes., vol. 38, pp. 48–97. Princeton Univ. Press, Princeton (1993)

  12. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge–Ampère equation. Invent. Math. 37(1), 1–44 (1976)

    MathSciNet  MATH  Google Scholar 

  13. Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149(1–2), 1–40 (1982)

    MathSciNet  MATH  Google Scholar 

  14. Błocki, Z.: Estimates for the complex Monge–Ampère operator. Bull. Pol. Acad. Sci. Math. 41(2), 151–157 (1993)

    MATH  Google Scholar 

  15. Błocki, Z.: On the \(L^p\) stability for the complex Monge–Ampère operator. Mich. Math. J. 42(2), 269–275 (1995)

    MATH  Google Scholar 

  16. Błocki, Z.: The complex Monge–Ampère operator in hyperconvex domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23(4), 721–747 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge–Ampère equation. Commun. Pure Appl. Math. 37(3), 369–402 (1984)

    MATH  Google Scholar 

  18. Cegrell, U.: On the Dirichlet problem for the complex Monge–Ampère operator. Math. Z. 185(2), 247–251 (1984)

    MathSciNet  MATH  Google Scholar 

  19. Cegrell, U., Persson, L.: The Dirichlet problem for the complex Monge–Ampère operator: stability in \(L^2\). Mich. Math. J. 39(1), 145–151 (1992)

    MATH  Google Scholar 

  20. Cegrell, U., Sadullaev, A.: Approximation of plurisubharmonic functions and the Dirichlet problem for the complex Monge–Ampère operator. Math. Scand. 71(1), 62–68 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Cherney, D., Latini, E., Waldron, A.: Quaternionic Kähler detour complexes and \(N=2\) supersymmetric black holes. Commun. Math. Phys. 302(3), 843–873 (2011)

    MATH  Google Scholar 

  22. Demailly, J.-P.: Regularization of closed positive currents and intersection theory. J. Algebraic Geom. 1(3), 361–409 (1992)

    MathSciNet  MATH  Google Scholar 

  23. Dinew, S.: An inequality for mixed Monge–Ampère measures. Math. Z. 262(1), 1–15 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Harvey, F.R., Lawson, H.B.J.: An introduction to potential theory in calibrated geometry. Am. J. Math. 131, 893–944 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Harvey, F.R., Lawson, H.B.J.: Duality of positive currents and plurisubharmonic functions in calibrated geometry. Am. J. Math. 131, 1211–1239 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Harvey, F.R., Lawson, H.B.J.: Plurisubharmonicity in a general geometric context, Geometry and analysis, no. 1, Adv. Lect. Math., vol. 17, pp. 363-402. Int. Press, Somerville (2011)

  27. Hitchin, N.J., Karlhede, A., Lindström, U., Roček, M.: Hyper-Kähler metrics and supersymmetry. Commun. Math. Phys. 108, 535–589 (1987)

    MATH  Google Scholar 

  28. Hörmander, L.: The analysis of linear partial differential operators. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Distribution theory and Fourier analysis , vol. 256. Springer, Berlin (1983)

  29. Kang, Q., Wang, W.: On Penrose integral formula and series expansion of \(k\)-regular functions on the quaternionic space \({\mathbb{H}}^n\). J. Geom. Phys. 64, 192–208 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Kołodziej, S.: The range of the complex Monge–Ampère operator. Indiana Univ. Math. J. 43(4), 1321–1338 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Kołodziej, S.: The range of the complex Monge–Ampère operator. II. Indiana Univ. Math. J. 44(3), 765–782 (1995)

    MathSciNet  MATH  Google Scholar 

  32. Kołodziej, S.: The complex Monge–Ampère equation. Acta Math. 180(1), 69–117 (1998)

    MathSciNet  MATH  Google Scholar 

  33. Kołodziej, S.: A sufficient condition for solvability of the Dirichlet problem for the complex Monge-Ampère operator. In: Complex geometric analysis in Pohang (1997), Contemp. Math., vol. 222, pp. 241–243. Amer. Math. Soc., Providence (1999)

  34. Kołodziej, S.: The Monge–Ampère equation on compact Kähler manifolds. Indiana Univ. Math. J. 52(3), 667–686 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Kołodziej, S.: The complex Monge–Ampère equation and pluripotential theory. Mem. Am. Math. Soc. 178(840), x+64 (2005)

    MATH  Google Scholar 

  36. Moore, E.H.: On the determinant of an hermitian matrix of quaternionic elements. Bull. Am. Math. Soc. 28, 161–162 (1922)

    MATH  Google Scholar 

  37. Nguyen, N.C.: Subsolution theorem for the complex Hessian equation. Univ. Iagel. Acta Math. 50, 69–88 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Rauch, J., Taylor, B.A.: The Dirichlet problem for the multidimensional Monge–Ampère equation. Rocky Mt. J. Math. 7(2), 345–364 (1977)

    MATH  Google Scholar 

  39. Sroka, M.: Weak solutions to the quaternionic Monge–Ampère equation. arXiv:1807.02482v1

  40. Verbitsky, M.: Balanced HKT metrics and strong HKT metrics on hypercomplex manifolds. Math. Res. Lett. 16(4), 735–752 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Wan, D.: Cegrell classes and a variational approach for the quaternionic Monge–Ampère equation. arXiv:1802.08411

  42. Wan, D.: The continuity and range of the quaternionic Monge–Ampère operator on quaternionic space. Math. Z 285, 461–478 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Wan, D.: The domain of definition of the quaternionic Monge–Ampère operator. Math. Nachr. 292, 1161–1173 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Wan, D.: Quaternionic Monge–Ampère operator for unbounded plurisubharmonic functions. Annali di Matematica Pura ed Applicata (1923-) 198, 381–398 (2019)

    MATH  Google Scholar 

  45. Wan, D., Kang, Q.: Potential theory for quaternionic plurisubharmonic functions. Mich. Math. J. 66, 3–20 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Wan, D., Wang, W.: Viscosity solutions to quaternionic Monge–Ampère equations. Nonlinear Anal. 140, 69–81 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Wan, D., Wang, W.: On quaternionic Monge–Ampère operator, closed positive currents and Lelong–Jensen type formula on quaternionic space. Bull. Sci. Math. 141, 267–311 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Wan, D., Zhang, W.: Quasicontinuity and maximality of quaternionic plurisubharmonic functions. J. Math. Anal. Appl. 424, 86–103 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Wang, W.: The \(k\)-Cauchy–Fueter complex, Penrose transformation and Hartogs phenomenon for quaternionic \(k\)-regular functions. J. Geom. Phys. 60(3), 513–530 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Wang, W.: On quaternionic complexes over unimodular quaternionic manifolds. Differ. Geom. Appl. 58, 227–253 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Zhu, J.: Dirichlet problem of quaternionic Monge–Ampère equations. Isr. J. Math. 214(2), 597–619 (2016)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Nature Science Foundation in China (No. 11871345) and China Scholarship Council (No. 201708440026). I wish to express my sincere gratitude to Xu-Jia Wang for his kind invitation to ANU and constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongrui Wan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of Lemma 3.7

Appendix A: Proof of Lemma 3.7

Proof

For \(C^2\) smooth plurisubharmonic functions \(u_i\), \(i=1,\ldots ,n\), their quaternionic Hessian \(\left[ \frac{\partial ^2u_i}{\partial {\overline{q}}_j\partial q_k}(q)\right] \) are positive definite hyperhermitian matrices. By Theorem 1.1.15 in [1],

$$\begin{aligned} det(u_1,\ldots ,u_n):=det\left( \left( \frac{\partial ^2u_1}{\partial {\bar{q}}_j\partial q_k}\right) ,\ldots ,\left( \frac{\partial ^2u_n}{\partial {\bar{q}}_j\partial q_k}\right) \right) >0. \end{aligned}$$

It follows from Aleksandrov inequality (cf. Corollary 1.1.16 in [1], or Corollary 2.16 in [51]) that

$$\begin{aligned} det\left( u_1,u_2,\ldots ,u_n\right) \ge det\left( u_1,u_1,u_3,\ldots ,u_n\right) ^{\frac{1}{2}}\cdot det\left( u_2,u_2,u_3,\ldots ,u_n\right) ^{\frac{1}{2}}. \end{aligned}$$
(A.1)

We claim that when all functions are in \(QPSH\cap C^2(\Omega )\),

$$\begin{aligned} \begin{aligned}&det\left( \underbrace{u_1,\ldots ,u_1}_p,\underbrace{u_2,\ldots ,u_2}_q,v_1,\ldots ,v_{n-p-q}\right) \\&\quad \ge det\left( \underbrace{u_1,\ldots ,u_1}_{p+q},v_1,\ldots ,v_{n-p-q}\right) ^{\frac{p}{p+q}}\cdot det\left( \underbrace{u_2,\ldots ,u_2}_{p+q},v_1,\ldots ,v_{n-p-q}\right) ^{\frac{q}{p+q}}. \end{aligned} \end{aligned}$$
(A.2)

We prove this claim by induction. The case for \(p=q=1\) holds by (A.1). Assume by induction that the case for \(p+q\le m\) has already been proved. It suffices to prove it for \(p+q\le m+1\). First we need the following inequality.

$$\begin{aligned} det\left( u_1,\underbrace{u_2,\ldots ,u_2}_{p+q},v,\ldots \right) \ge det\left( \underbrace{u_1,\ldots ,u_1}_{p+q+1},v,\ldots \right) ^{\frac{1}{p+q+1}}\cdot det\left( \underbrace{u_2,\ldots ,u_2}_{p+q+1},v,\ldots \right) ^{\frac{p+q}{p+q+1}}. \end{aligned}$$
(A.3)

By induction assumption we have

$$\begin{aligned}&det\left( u_1,\underbrace{u_2,\ldots ,u_2}_{p+q},v,\ldots \right) \\&\quad \ge det\left( \underbrace{u_1,\ldots ,u_1}_{p+q},u_2,v,\ldots \right) ^{\frac{1}{p+q}}\cdot det\left( \underbrace{u_2,\ldots ,u_2}_{p+q},u_2,v,\ldots \right) ^{\frac{p+q-1}{p+q}}\\&\quad =det\left( \underbrace{u_1,\ldots ,u_1}_{p+q-1},u_2,u_1,v,\ldots \right) ^{\frac{1}{p+q}}\cdot det\left( \underbrace{u_2,\ldots ,u_2}_{p+q+1},v,\ldots \right) ^{\frac{p+q-1}{p+q}}\\&\quad \ge \left[ det\left( \underbrace{u_1,\ldots ,u_1}_{p+q},u_1,v,\ldots \right) ^{\frac{p+q-1}{p+q}}\cdot det\left( \underbrace{u_2,\ldots ,u_2}_{p+q},u_1,v,\ldots \right) ^{\frac{1}{p+q}}\right] ^{\frac{1}{p+q}}\\&\qquad \cdot det\left( \underbrace{u_2,\ldots ,u_2}_{p+q+1},v,\ldots \right) ^{\frac{p+q-1}{p+q}}. \end{aligned}$$

Then we have

$$\begin{aligned}&det\left( u_1,\underbrace{u_2,\ldots ,u_2}_{p+q},v,\ldots \right) ^{\frac{(p+q)^2-1}{(p+q)^2}}\\&\quad \ge det\left( \underbrace{u_1,\ldots ,u_1}_{p+q+1},v,\ldots \right) ^{\frac{p+q-1}{(p+q)^2}}\cdot det\left( \underbrace{u_2,\ldots ,u_2}_{p+q+1},v,\ldots \right) ^{\frac{p+q-1}{p+q}}. \end{aligned}$$

It follows (A.3). Now we complete the induction by using (A.3).

$$\begin{aligned} \begin{aligned}&det\left( \underbrace{u_1,\ldots ,u_1}_{p+1},\underbrace{u_2,\ldots ,u_2}_{q},v,\ldots \right) \\&\quad \ge det\left( \underbrace{u_1,\ldots ,u_1}_{p+q},u_1,v,\ldots \right) ^{\frac{p}{p+q}}\cdot det\left( \underbrace{u_2,\ldots ,u_2}_{p+q},u_1,v,\ldots \right) ^{\frac{q}{p+q}}\\&\quad \ge det\left( \underbrace{u_1,\ldots ,u_1}_{p+q+1},v,\ldots \right) ^{\frac{p}{p+q}}\cdot \\&\qquad \left[ det\left( \underbrace{u_2,\ldots ,u_2}_{p+q+1},v,\ldots \right) ^{\frac{p+q}{p+q+1}}\cdot det\left( \underbrace{u_1,\ldots ,u_1}_{p+q+1},v,\ldots \right) ^{\frac{1}{p+q+1}}\right] ^{\frac{q}{p+q}}\\&\quad =det\left( \underbrace{u_1,\ldots ,u_1}_{p+q+1},v,\ldots \right) ^{\frac{p+1}{p+q+1}}\cdot det\left( \underbrace{u_2,\ldots ,u_2}_{p+q+1},v,\ldots \right) ^{\frac{q}{p+q+1}}. \end{aligned} \end{aligned}$$

Then (A.2) is proved. It follows that

$$\begin{aligned} det\left( u_1,\underbrace{u_2,\ldots ,u_2}_{n-1}\right) \ge (det u_1)^{\frac{1}{n}}(det u_2)^{\frac{n-1}{n}}. \end{aligned}$$

This is the case of (3.4) for \(u_2=\cdots =u_n=u\). Assume that (3.4) is proved for \(u_{p+1}=\cdots =u_n=u\). We now prove it for \(u_{p+2}=\cdots =u_n=u\). By (A.2) we have

$$\begin{aligned} \begin{aligned}&det\left( u_1,\ldots ,u_p,u_{p+1},\underbrace{u,\ldots ,u}_{n-p-1}\right) \\&\quad \ge det\left( u_1,\ldots ,u_p,\underbrace{u_{p+1},\ldots ,u_{p+1}}_{n-p}\right) ^{\frac{1}{n-p}} \cdot det\left( u_1,\ldots ,u_p,\underbrace{u,\ldots ,u}_{n-p}\right) ^{\frac{n-p-1}{n-p}}\\&\quad \ge \left[ (det u_1)^{\frac{1}{n}}\cdots (det u_p)^{\frac{1}{n}}(det u_{p+1})^{\frac{n-p}{n}}\right] ^{\frac{1}{n-p}}\cdot \left[ (det u_1)^{\frac{1}{n}}\cdots (det u_p)^{\frac{1}{n}}(det u)^{\frac{n-p}{n}}\right] ^{\frac{n-p-1}{n-p}}\\&\quad =(det u_1)^{\frac{1}{n}}\cdots (det u_p)^{\frac{1}{n}}(det u_{p+1})^{\frac{1}{n}}(det u)^{\frac{n-p-1}{n}}. \end{aligned} \end{aligned}$$

The induction is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, D. Subsolution theorem and the Dirichlet problem for the quaternionic Monge–Ampère equation. Math. Z. 296, 1673–1690 (2020). https://doi.org/10.1007/s00209-020-02484-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02484-x

Keywords

Navigation