Skip to main content
Log in

On Euclidean ideal classes in certain Abelian extensions

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this article, we show that certain abelian extensions K with unit rank greater than or equal to three have cyclic class group if and only if it has a Euclidean ideal class. This result improves an earlier result of Murty and Graves. One can improve this result up to unit rank 2 if one assumes the Elliott and Halberstam conjecture (see Conjecture 1 in preliminaries). These results are known under generalized Riemann hypothesis by the work of Lenstra (J Lond Math Soc 10:457–465) [see also Weinberger (Proc Symp Pure Math 24:321–332)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bilu, Y.F., Deshouillers, J.-M., Gun, S., Luca, F.: Random orderings in modulus of consecutive Hecke eigenvalues of primitive forms. Compos. Math. 154(11), 2441–2461 (2018)

    Article  MathSciNet  Google Scholar 

  2. Bombieri, E., Friedlander, J.B., Iwaniec, H.: Primes in arithmetic progressions to large moduli. Acta Math. 156(3–4), 203–251 (1986)

    Article  MathSciNet  Google Scholar 

  3. Clark, D.A., Murty, M.R.: The Euclidean algorithm for Galois extensions of \({\mathbb{Q}}\). J. Reine Angew. Math. 459, 151–162 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Elliott, P. D. T. A., Halberstam, H.: A conjecture in prime number theory. Symposia Mathematica, vol. IV, pp. 59–72(INDAM, Rome, 1968/69). Academic Press, London (1970)

  5. Fouvry, É.: Théorème de Brun–Titchmarsh; application au théorème de Fermat. Invent. Math. 79, 383–407 (1985)

    Article  MathSciNet  Google Scholar 

  6. Friedlander, J.B., Iwaniec, H.: Opera de Cribro. Colloquium Publications—American Mathematical Society, Providence (2010)

    Book  Google Scholar 

  7. Graves, H.: Growth results and Euclidean ideals. J. Number Theory 133(8), 2756–2769 (2013)

    Article  MathSciNet  Google Scholar 

  8. Graves, H., Murty, M.R.: A family of number fields with unit rank at least \(4\) that has Euclidean ideals. Proc. Am. Math. Soc. 141, 2979–2990 (2013)

    Article  MathSciNet  Google Scholar 

  9. Gupta, R., Murty, M.R.: A remark on Artin’s conjecture. Invent. Math. 78(1), 127–130 (1984)

    Article  MathSciNet  Google Scholar 

  10. Gupta, R., Murty, M. R., Murty, V. K.: The Euclidean algorithm for S-integers, Number Theory (Montreal 1985), CMS Conf. Proc. 7, American Mathematical Society, Providence, pp. 189–201 (1987)

  11. Halberstam, H., Richert, H.-E.: Sieve methods. Academic Press, London (1974)

    MATH  Google Scholar 

  12. Harper, M.: \({\mathbb{Z}} [\sqrt{14}]\) is Euclidean. Can. J. Math. 56(1), 55–70 (2004)

    Article  MathSciNet  Google Scholar 

  13. Harper, M., Murty, M.R.: Euclidean rings of algebraic integers. Can. J. Math. 56(1), 71–76 (2004)

    Article  MathSciNet  Google Scholar 

  14. Heath-Brown, D.R.: Artin’s conjecture for primitive roots. Quart. J. Math. Oxford Ser. 37(145), 27–38 (1986)

    Article  MathSciNet  Google Scholar 

  15. Iwaniec, H.: A new form of the error term in the linear sieve. Acta Arith. 37, 307–320 (1980)

    Article  MathSciNet  Google Scholar 

  16. Lenstra Jr., H.W.: Euclid’s algorithm in cyclotomic fields. J. Lond. Math. Soc. 10, 457–465 (1975)

    Article  MathSciNet  Google Scholar 

  17. Lenstra Jr., H.W.: Euclidean ideal classes. Astérisque 61, 121–131 (1979)

    MathSciNet  MATH  Google Scholar 

  18. Motzkin, T.: The Euclidean algorithm. Bull. Am. Math. Soc. 55, 1142–1146 (1949)

    Article  MathSciNet  Google Scholar 

  19. Murty, M.R., Petersen, K.L.: The Euclidean algorithm for number fields and primitive roots. Proc. Am. Math. Soc. 141, 181–190 (2013)

    Article  MathSciNet  Google Scholar 

  20. Sivaraman, J.: Existence of Euclidean ideal classes beyond certain rank. J. Ramanujan Math. Soc. 34(4), 427–432 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Weinberger, P.J.: On Euclidean rings of algebraic integers. Proc. Symp. Pure Math. 24, 321–332 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshouillers, JM., Gun, S. & Sivaraman, J. On Euclidean ideal classes in certain Abelian extensions. Math. Z. 296, 847–859 (2020). https://doi.org/10.1007/s00209-019-02434-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02434-2

Keywords

Mathematics Subject Classification

Navigation