Skip to main content
Log in

Remarks on Chern–Einstein Hermitian metrics

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study some basic properties and examples of Hermitian metrics on complex manifolds whose traces of the curvature of the Chern connection are proportional to the metric itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky, D., Cortés, V., Hasegawa, K., Kamishima, Y.: Homogeneous locally conformally Kähler and Sasaki manifolds. Internat. J. Math. 26(6), 29 (2015)

    MATH  Google Scholar 

  2. Alekseevsky, D.V., Podestà, F.: Homogeneous almost Kähler manifolds and the Chern-Einstein equation arXiv:1811.04068

  3. Angella, D., Calamai, S., Spotti, C.: On the Chern–Yamabe problem. Math. Res. Lett. 24(3), 645–677 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Balas, A.: Compact Hermitian manifolds of constant holomorphic sectional curvature. Math. Z. 189(2), 193–210 (1985)

    MathSciNet  MATH  Google Scholar 

  5. Bogomolov, F.A.: Unstable vector bundles and curves on surfaces, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 517–524, Acad. Sci. Fennica, Helsinki (1980)

  6. Boothby, W.M.: Hermitian manifolds with zero curvature. Michigan Math. J. 5(2), 229–233 (1958)

    MathSciNet  MATH  Google Scholar 

  7. Calamai, S.: Positive projectively flat manifolds are locally conformally flat-Kähler Hopf manifolds, arXiv:1711.00929

  8. Catenacci, R., Marzuoli, A.: A note on a Hermitian analog of Einstein spaces. Ann. Inst. Henri Poincaré, Phys. Théor. 40, 151–157 (1984)

    MathSciNet  MATH  Google Scholar 

  9. Chen, Xx, Lebrun, C., Weber, B.: On conformally Kähler, Einstein manifolds. J. Am. Math. Soc. 21(4), 1137–1168 (2008)

    MATH  Google Scholar 

  10. Della Vedova, A.: Special homogeneous almost complex structures on symplectic manifolds. arXiv:1706.06401

  11. Della Vedova, A., Gatti, A.: Almost Kaehler geometry of adjoint orbits of semisimple Lie groups. arXiv:1811.06958

  12. Drăghici, T.: Symplectic obstructions to the existence of \(\omega \)-compatible Einstein metrics. Differ. Geom. Appl. 22(2), 147–158 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Gauduchon, P.: Fibrés hermitiens à endomorphisme de Ricci non négatif. Bull. Soc. Math. France 105(2), 113–140 (1977)

    MathSciNet  MATH  Google Scholar 

  14. Gauduchon, P.: Le théorème de l’excentricité nulle. C. R. Acad. Sci. Paris Sér. A-B 285(5), A387–A390 (1977)

    MATH  Google Scholar 

  15. Gauduchon, P.: La topologie d’une surface hermitienne d’Einstein. C. R. Acad. Sci. Paris Sér. A-B 290(11), A509–A512 (1980)

    MathSciNet  MATH  Google Scholar 

  16. Gauduchon, P.: Le théorème de dualité pluri-harmonique. C. R. Acad. Sci. Paris Sér. I Math. 293(1), 59–61 (1981)

    MathSciNet  MATH  Google Scholar 

  17. Gauduchon, P.: La \(1\)-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267(4), 495–518 (1984)

    MathSciNet  MATH  Google Scholar 

  18. Gauduchon, P., Ivanov, S.: Einstein-Hermitian surfaces and Hermitian Einstein–Weyl structures in dimension 4. Math. Z. 226(2), 317–326 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Goldberg, S.I.: Tensorfields and curvature in Hermitian manifolds with torsion. Ann. Math. (2) 63, 64–76 (1956)

    MathSciNet  MATH  Google Scholar 

  20. Goldberg, S.I.: Integrability of almost Kaehler manifolds. Proc. Am. Math. Soc. 21, 96–100 (1969)

    MathSciNet  MATH  Google Scholar 

  21. Hasegawa, K.: Complex and Kähler structures on compact solvmanifolds, Conference on Symplectic topology. J. Symplectic Geom. 3(4), 749–767 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Inoue, Ma.: On surfaces of Class VII\(_0\), Invent. Math. 24, 269–310 (1974)

    MathSciNet  MATH  Google Scholar 

  23. Kobayashi, S.: First Chern class and holomorphic tensor fields. Nagoya Math. J. 77, 5–11 (1980)

    MathSciNet  MATH  Google Scholar 

  24. Kobayashi, S.: Curvature and stability of vector bundles. Proc. Jpn. Acad. Ser. A Math. Sci. 58(4), 158–162 (1982)

    MathSciNet  MATH  Google Scholar 

  25. Kobayashi, S.: Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15; Kanô Memorial Lectures, 5, Princeton, NJ: Princeton University Press. Iwanami Shoten Publishers, Tokyo (1987)

  26. Kobayashi, S., Wu, H.-H.: On holomorphic sections of certain hermitian vector bundles. Math. Ann. 189, 1–4 (1970)

    MathSciNet  MATH  Google Scholar 

  27. LeBrun, C.: Einstein metrics on complex surfaces, in Geometry and Physics (Aarhus, 1995) Dekker. New York 167–176 (1997)

  28. Lejmi, M., Upmeier, M.: Integrability theorems and conformally constant Chern scalar curvature metrics in almost Hermitian geometry, to appear in Commun. Anal. Geom. arXiv:1703.01323

  29. Liu, K.-F., Yang, X.-K.: Geometry of Hermitian manifolds. Internat. J. Math. 23(6), 1250055 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Liu, K.-F., Yang, X.-K.: Ricci curvatures on Hermitian manifolds. Trans. Am. Math. Soc. 369(7), 5157–5196 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Lübke, M.: Chernklassen von Hermite–Einstein–Vektorbündeln. Math. Ann. 260(1), 133–141 (1982)

    MathSciNet  Google Scholar 

  32. Lübke, M.: Stability of Einstein–Hermitian vector bundles. Manuscripta Math. 42(2–3), 245–257 (1983)

    MathSciNet  MATH  Google Scholar 

  33. Lübke, M., Teleman, A.: The Kobayashi–Hitchin correspondence. World Scientific Publishing Co. Inc., River Edge (1995)

    MATH  Google Scholar 

  34. MathOverFlow discussion on “Chern-Einstein metrics on complex Hermitian manifolds” at https://mathoverflow.net/questions/236281/chern-einstein-metrics-on-complex-hermitian-manifolds, with contributions by Yury Ustinovskiy and YangMills

  35. Matsuo, K.: On local conformal Hermitian-flatness of Hermitian manifolds. Tokyo J. Math. 19(2), 499515 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Ovando, G.: Invariant complex structures on solvable real Lie groups. Manuscr. Math. 103(1), 19–30 (2000)

    MathSciNet  MATH  Google Scholar 

  37. Ovando, G.: Complex, symplectic and Kähler structures on four dimensional Lie groups. Rev. Un. Mat. Argentina 45(2), 55–67 (2004)

    MathSciNet  MATH  Google Scholar 

  38. Podestà, F.: Homogeneous Hermitian manifolds and special metrics. Transf. Groups 23(4), 1129–1147 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Popovici, D.: Aeppli cohomology classes associated with Gauduchon metrics on compact complex manifolds. Bull. Soc. Math. Fr. 143(4), 763–800 (2015)

    MathSciNet  MATH  Google Scholar 

  40. SageMath, the Sage Mathematics Software System (Version 8.1). The Sage Developers (2017) http://www.sagemath.org

  41. Snow, D.M.: Invariant complex structures on reductive Lie groups. J. Reine Angew. Math. 371, 191–215 (1986)

    MathSciNet  MATH  Google Scholar 

  42. Snow, J.E.: Invariant complex structures on four-dimensional solvable real Lie groups. Manuscripta Math. 66(4), 397–412 (1990)

    MathSciNet  MATH  Google Scholar 

  43. Streets, J., Tian, G.: Hermitian curvature flow. J. Eur. Math. Soc. (JEMS) 13(3), 601–634 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Székelyhidi, G.G., Tosatti, V., Weinkove, B.: Gauduchon metrics with prescribed volume form. Acta Math. 219(1), 181–211 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Teleman, A.: The pseudo-effective cone of a non-Kählerian surface and applications. Math. Ann. 335(4), 965–989 (2006)

    MathSciNet  MATH  Google Scholar 

  46. Tosatti, V.: Non-Kähler Calabi-Yau manifolds, in Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong, 261–277, Contemp. Math., 644, Amer. Math. Soc., Providence, RI (2015)

  47. Tosatti, V., Weinkove, B.: The complex Monge–Ampère equation on compact Hermitian manifolds. J. Am. Math. Soc. 23(4), 1187–1195 (2010)

    MATH  Google Scholar 

  48. Yang, B., Zheng, F.: On curvature tensors of Hermitian Manifolds, to appear in Commun. Anal. Geom., arXiv:1602.01189

  49. Yang, X.-K.: Scalar curvature on compact complex manifolds. Trans. Am. Math. Soc. 371, 2073–2087 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Stefan Ivanov, Fabio Podestà, Valentino Tosatti, Yury Ustinovskiy for several useful discussions on the subject. During the preparation of this note, the first two named authors have been supported by the Project PRIN “Varietà reali e complesse: geometria, topologia e analisi armonica”, by the Project SIR2014 “Analytic aspects in complex and hypercomplex geometry” (AnHyC) code RBSI14DYEB, and by GNSAGA of INdAM. DA is further supported by project FIRB “Geometria Differenziale e Teoria Geometrica delle Funzioni” ’, and SC by the Simons Center for Geometry and Physics, Stony Brook University. The third-named author is supported by AUFF Starting Grant 24285, Villum Young Investigator 0019098, and DNRF95 QGM “Centre for Quantum Geometry of Moduli Spaces”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Angella.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angella, D., Calamai, S. & Spotti, C. Remarks on Chern–Einstein Hermitian metrics. Math. Z. 295, 1707–1722 (2020). https://doi.org/10.1007/s00209-019-02424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02424-4

Keywords

Mathematics Subject Classification

Navigation