Skip to main content
Log in

On the congruence subgroup problem for anisotropic groups of inner type \(A_n\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let G be an absolutely almost simple simply connected algebraic group of inner form of type \(A_n\) defined and anisotropic over a number field k. Let V denote a complete set of inequivalent valuations of k and \(V_f\) (resp. \(\infty \)) the subset of non-archimedean (resp. archimedean) valuations in V. This work deals with the congruence subgroup problem for groups G of inner form of type \(A_n\) with respect to a particular class of valuations \(S\subset V\) which we term as d-amenable. Fix a realization \(G \subset {\mathrm {GL}}(n)\) as a k-subgroup and set \(\Lambda _S = G(k)\cap GL(n, {\mathcal {O}}_S)\) where \({\mathcal {O}}_S\) is the ring of S-integers in k. Then we show that if S is d-amenable and \(\Gamma \) is any subgroup of finite index in \(\Lambda _S\), there exists a finite set \(S(\Gamma )\) and positive integers \(\{r_v \mid v \in S(\Gamma )\}\) such that \(\Gamma \) contains \(\{\gamma \in \Lambda _S\mid \gamma \in (1 +{\mathfrak {p}}_v^{r_v})\ \text {for}\ v\in S(\Gamma )\}\). The d-amenability property holds for any S with \(V\smallsetminus S\) finite. We also show that the set of primes in V in an arithmetic progression is d-amenable for any d so that we recover the result of Prasad and Rapinchuk (Proc Steklov Inst Math 292(1):216–246, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bass, H., Lazard, M., Serre, J.-P.: Sous-groupes d’indice fini dans \({ SL}(n,\,{ Z})\). Bull. Am. Math. Soc. 70, 385–392 (1964)

    Article  MathSciNet  Google Scholar 

  2. Bass, H., Milnor, J., Serre, J.-P.: Solution of the congruence subgroup problem for \({\rm SL}_{n}\,(n\ge 3)\) and \({\rm Sp}_{2n}\,(n\ge 2)\). Inst. Hautes Études Sci. Publ. Math. 33, 59–137 (1967)

    Article  Google Scholar 

  3. Chernousov, V.I.: The projective simplicity of algebraic groups that are split over a quadratic extension of a number field. Dokl. Akad. Nauk SSSR 296(6), 1301–1305 (1987)

    Google Scholar 

  4. Chernousov, V.I.: Projective simplicity of some groups of rational points over algebraic number fields. Izv. Akad. Nauk SSSR Ser. Mat. 53(2), 398–410 (1989)

    MathSciNet  Google Scholar 

  5. Feit, W., Seitz, G.M.: On finite rational groups and related topics. Ill. J. Math. 33(1), 103–131 (1989)

    Article  MathSciNet  Google Scholar 

  6. Gille, P.: Le problème de Kneser-Tits. Astérisque (326)-Exp. No. 983. In: Séminaire Bourbaki, 2007/2008 Exposés, 982-996; Astérisque 326 pp. 39–81. Soc. Mat. de France, Paris (2009). ISBN:978-285629-269-3

  7. Kneser, M.: Normalteiler ganzzahliger Spingruppen. J. Reine Angew. Math. 311(312), 191–214 (1979)

    MathSciNet  MATH  Google Scholar 

  8. Margulis, G.A.: Multiplicative groups of a quaternion algebra over a global field. Dokl. Akad. Nauk SSSR 252(3), 542–546 (1980)

    MathSciNet  Google Scholar 

  9. Matsumoto, H.: Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École Norm. Sup. 4(2), 1–62 (1969)

    Article  Google Scholar 

  10. Mennicke, J.L.: Finite factor groups of the unimodular group. Ann. Math. 2(81), 31–37 (1965)

    Article  MathSciNet  Google Scholar 

  11. Platonov, V.P., Rapinchuk, A.S.: Multiplicative structure of division algebras over number fields and the Hasse norm principle. Trudy Mat. Inst. Steklov. 165, 171–187 (1984). Algebraic geometry and its applications

    MathSciNet  MATH  Google Scholar 

  12. Prasad, G., Raghunathan, M.S.: On the congruence subgroup problem: determination of the “metaplectic kernel”. Invent. Math. 71(1), 21–42 (1983)

    Article  MathSciNet  Google Scholar 

  13. Prasad, G., Raghunathan, M.S.: Topological central extensions of semisimple groups over local fields. Ann. Math. (2) 119(1), 143–201 (1984)

    Article  MathSciNet  Google Scholar 

  14. Prasad, G., Rapinchuk, A.S.: Computation of the “metaplectic kernel”. Inst. Hautes Études Sci. Publ. Math. 84, 91–187 (1996)

    Article  MathSciNet  Google Scholar 

  15. Prasad, G., Rapinchuk, A.S.: On the congruence kernel for simple algebraic groups. Proc. Steklov Inst. Math. 292(1), 216–246 (2016)

    Article  MathSciNet  Google Scholar 

  16. Raghunathan, M.S.: On the congruence subgroup problem. Inst. Hautes Études Sci. Publ. Math. 46, 107–161 (1976)

    Article  MathSciNet  Google Scholar 

  17. Raghunathan, M.S.: On the congruence subgroup problem. II. Invent. Math. 85(1), 73–117 (1986)

    Article  MathSciNet  Google Scholar 

  18. Raghunathan, M.S.: On the group of norm \(1\) elements in a division algebra. Math. Ann. 279(3), 457–484 (1988)

    Article  MathSciNet  Google Scholar 

  19. Rapinchuk, A.S.: The multiplicative arithmetic of division algebras over number fields and the metaplectic problem. Izv. Akad. Nauk SSSR Ser. Mat. 51(5), 1033–1064, 1118 (1987)

  20. Segev, Y.: On finite homomorphic images of the multiplicative group of a division algebra. Ann. Math. (2) 149(1), 219–251 (1999)

    Article  MathSciNet  Google Scholar 

  21. Segev, Y., Seitz, G.M.: Anisotropic groups of type \(A_n\) and the commuting graph of finite simple groups. Pac. J. Math. 202(1), 125–225 (2002)

    Article  MathSciNet  Google Scholar 

  22. Serre, J.-P.: Le problème des groupes de congruence pour SL2. Ann. Math. 2(92), 489–527 (1970)

    Article  Google Scholar 

  23. Sury, B.: Congruence subgroup problem for anisotropic groups over semilocal rings. Proc. Indian Acad. Sci. Math. Sci. 101(2), 87–110 (1991)

    Article  MathSciNet  Google Scholar 

  24. Tomanov, G.: Projective simplicity of groups of rational points of simply connected algebraic groups defined over number fields. In: Topics in Algebra, Part 2 (Warsaw, 1988), Banach Center Publ., vol. 26, pp. 455–466. PWN, Warsaw (1990)

  25. Vasserstein, L.I.: Subgroups of finite index in spin groups of rank 2. Mat. Sbornik 75(7), 178–184 (1968)

    Google Scholar 

Download references

Acknowledgements

This paper grew out of the doctoral dissertation of the first named author under the supervision of the second named author. Much of the work on the paper was done at IIT Bombay and we record our thanks to that institution for the support extended. We thank the referee for many valuable comments, in particular for suggesting Proposition 2.2 and its proof which replaces a weaker result in the paper submitted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Radhika.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhika, M.M., Raghunathan, M.S. On the congruence subgroup problem for anisotropic groups of inner type \(A_n\). Math. Z. 295, 583–594 (2020). https://doi.org/10.1007/s00209-019-02373-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02373-y

Navigation