Skip to main content
Log in

Abundance theorem for surfaces over imperfect fields

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we show the abundance theorem for log canonical surfaces over fields of positive characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkar, C.: On existence of log minimal models II. J. Reine Angew. Math. 658, 99–113 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Birkar, C.: The augmented base locus of real divisors over arbitrary fields. Math. Ann. 368(3–4), 905–921 (2017)

    Article  MathSciNet  Google Scholar 

  3. Birkar, C., Chen, Y., Zhang, L.: Iitaka’s \(C_{n, m}\) conjecture for \(3\)-folds over finite fields. Nagoya Math. J. 229, 21–51 (2018)

    Article  MathSciNet  Google Scholar 

  4. Fujino, O.: Minimal model theory for log surfaces. Publ. Res. Inst. Math. Sci. 48(2), 339–371 (2012)

    Article  MathSciNet  Google Scholar 

  5. Fujino, O.: Foundation of the Minimal Model Program. MSJ Memoirs, vol. 35. Mathematical Society of Japan, Tokyo (2017)

    MATH  Google Scholar 

  6. Fujino, O., Tanaka, H.: On log surfaces. Proc. Jpn. Acad. Ser. A Math. Sci. 88(8), 109–114 (2012)

    Article  MathSciNet  Google Scholar 

  7. Fujita, T.: Semipositive line bundles. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30(2), 353–378 (1983)

    MathSciNet  MATH  Google Scholar 

  8. Fujita, T.: Fractionally logarithmic canonical rings of algebraic surfaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30(3), 685–696 (1984)

    MathSciNet  MATH  Google Scholar 

  9. Keel, S.: Basepoint freeness for nef and big linebundles in positive characteristic. Ann. Math. 149, 253–286 (1999)

    Article  MathSciNet  Google Scholar 

  10. Kollár, J.: Singularities of the Minimal Model Program. Cambridge Tracts in Mathematics, vol. 200 (2013)

  11. Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties, Cambrigde Tracts in Mathematics, Vol. 134 (1998)

  12. Maddock, Z.: Regular del Pezzo surfaces with irregularity. J. Algebra Geom. 25(3), 401–429 (2016)

    Article  MathSciNet  Google Scholar 

  13. Maşek, V.: Kodaira-Iitaka and numerical dimensions of algebraic surfaces over the algebraic closure of a finite field. Rev. Roumaine Math. Pure. Appl. 38(7–8), 679–685 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Seidenberg, A.: The hyperplane sections of normal varieties. Trans. Am. Math. Soc. 69, 357–386 (1950)

    Article  MathSciNet  Google Scholar 

  15. Schröer, S.: Weak del Pezzo surfaces with irregularity. Tohoku Math. J. 59, 293–322 (2007)

    Article  MathSciNet  Google Scholar 

  16. Tanaka, H.: Minimal models and abundance for positive characteristic log surfaces. Nagoya Math. J. 216, 1–70 (2014)

    Article  MathSciNet  Google Scholar 

  17. Tanaka, H.: Semiample perturbations for log canonical varieties over an F-finite field containing an infinite perfect field. Int. J. Math. 28(5), 1750030, 13 (2017)

    Article  MathSciNet  Google Scholar 

  18. Tanaka, H.: Behavior of canonical divisors under purely inseparable base changes. J. Reine Angew. Math. 744, 237–264 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Tanaka, H.: Minimal model program for excellent surfaces. Ann. Inst. Fourier (Grenoble) 68(1), 345–376 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of this work was done whilst the author visited National Taiwan University in December 2013 with the support of the National Center for Theoretical Sciences. He would like to thank Professor Jungkai Alfred Chen for his generous hospitality. The author would like to thank Professors Caucher Birkar, Yoshinori Gongyo, Paolo Cascini, János Kollár, Mircea Mustaţă, Chenyang Xu for very useful comments and discussions. The author also thanks the referee for reading the manuscript carefully and for suggesting several improvements. This work was partially supported by JSPS KAKENHI (No. 24224001) and EPSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromu Tanaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Shokurov polytopes in convex geometry

Appendix A. Shokurov polytopes in convex geometry

In this section, we summarise some results of Shokurov polytopes in a setting of convex geometry. We fix the following notation.

Notation A.1

Let M and N be torsion free \(\mathbb {Z}\)-modules and let

$$\begin{aligned} \varphi :M \times N \rightarrow \mathbb {Z}\end{aligned}$$

be a \(\mathbb {Z}\)-bilinear homomorphism. For \(D\in M\) and \(C \in N\), we write

$$\begin{aligned} \varphi (D, C)=D\cdot C=C\cdot D \end{aligned}$$

by abuse of notation. Assume that \(\dim _{\mathbb {R}}M_{\mathbb {R}}<\infty \), i.e. M is a free \(\mathbb {Z}\)-module of finite rank. Fix a rational polytope \(\mathcal {L} \subset M_{\mathbb {R}}\). Fix an \(\mathbb {R}\)-linear basis of \(M_{\mathbb {R}}\) and we denote the sup norm with respect to this basis by \(||\bullet ||\).

Lemma A.2

We use Notation A.1. Fix \(K \in M_{\mathbb {Q}}\), \(\Delta \in \mathcal {L}\), and \(\rho \in \mathbb {R}_{>0}\). Then, there exist positive real numbers \(\epsilon , \delta >0\), depending on K, \(\Delta \), and \(\rho \), which satisfy the following properties.

  1. (1)

    For every \(C \in N\) such that \(-(K+B)\cdot C \le \rho \) for all \(B\in \mathcal {L}\), if \((K+\Delta )\cdot C>0\), then \((K+\Delta )\cdot C>\epsilon \).

  2. (2)

    If \(C\in N\) and \(B_0\in \mathcal {L}\) satisfy \(||B_0-\Delta ||<\delta \), \((K+B_0)\cdot C\le 0\), and \(-(K+B)\cdot C \le \rho \) for all \(B\in \mathcal {L}\), then \((K+\Delta )\cdot C\le 0\).

Proof

The assertions follow from the same proof as in [1, Proposition 3.2(1)] or [5, Theorem 4.7.2(1)]. The assertion (2) follows from the same proof as in [5, Theorem 4.7.2(2)] (although the statement of [5, Theorem 4.7.2(2)] is the same as the one of [1, Proposition 3.2(2)], [5, Theorem 4.7.2(2)] fixes minor errors appearing in [1, Proposition 3.2(2)]). \(\square \)

Proposition A.3

We use Notation A.1. Let \(K \in M_{\mathbb {Q}}\) and \(\rho \in \mathbb {R}_{>0}\). Fix a subset \(\{C_t\}_{t\in T} \subset N\) such that

$$\begin{aligned} -(K+B)\cdot C_t\le \rho \end{aligned}$$

for every \(t \in T\) and every \(B\in \mathcal {L}\). For any subset \(T' \subset T\), we define

$$\begin{aligned} \mathcal {N}_{T'}:=\{B\in \mathcal {L}\,|\,(K+B)\cdot C_t\ge 0 \,\,for\,\, every \,\,t \in T'\}. \end{aligned}$$

Then there exists a finite subset \(S \subset T\) such that

$$\begin{aligned} \mathcal {N}_{T}=\mathcal {N}_{S}. \end{aligned}$$

In particular \(\mathcal {N}_{T}\) is a rational polytope.

Proof

We can apply the same argument as in [1, Proposition 3.2(3)] by using Lemma A.2 instead of [1, Proposition 3.2(1)(2)]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, H. Abundance theorem for surfaces over imperfect fields. Math. Z. 295, 595–622 (2020). https://doi.org/10.1007/s00209-019-02345-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02345-2

Keywords

Mathematics Subject Classification

Navigation