Skip to main content
Log in

A Lefschetz fixed point theorem for multivalued maps of finite spaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove a version of the Lefschetz fixed point theorem for multivalued maps \(F:X\multimap X\) in which X is a finite \(T_0\) space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We would like to point out that while this specific correspondence seems to be the most commonly used one, it would also be possible to define the order relation by replacing \(U_{y}\) by \({\text {cl}}\, y\). This was in fact done in the paper [2] which first established the connection between posets and finite \(T_0\) spaces. In this convention, down-sets in the poset correspond to closed sets, and up-sets to open sets. All of the results in the present paper remain valid under this convention, if one reverses all poset inequalities.

References

  1. Alexander, Z., Bradley, E., Meiss, J.D., Sanderson, N.: Simplicial multivalued maps and the witness complex for dynamical analysis of time series. SIAM Dyn. Syst. 14, 1278–1307 (2015)

    Article  MathSciNet  Google Scholar 

  2. Alexandroff, P.: Diskrete Räume. Recueil Mathématique. Nouvelle Série 2, 501–519 (1937)

  3. Aubin, J.-P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    Book  Google Scholar 

  4. Baclawski, K., Björner, A.: Fixed points in partially ordered sets. Adv. Math. 31, 263–287 (1979)

    Article  MathSciNet  Google Scholar 

  5. Barmak, J.A.: Algebraic topology of finite topological spaces and applications. Lecture Notes in Mathematics, vol. 2032. Springer, pp. xviii+170 (2011)

  6. Barmak, J.A.: On Quillen’s theorem A for posets. J. Combin. Theory Ser. A 118, 2445–2453 (2011)

    Article  MathSciNet  Google Scholar 

  7. Barmak, J.A.: The fixed point property in every weak homotopy type. Am. J. Math. 138, 1425–1438 (2016)

    Article  MathSciNet  Google Scholar 

  8. Batko, B., Kaczynski, T., Mrozek, M., Wanner, T.: Linking combinatorial and classical dynamics: Conley index and Morse decompositions (2017) (submitted for publication)

  9. Björner, A., Wachs, M., Welker, V.: Poset fiber theorems. Trans. Am. Math. Soc. 357, 1877–1899 (2004)

    Article  MathSciNet  Google Scholar 

  10. Conley, C.: Isolated Invariant Sets and the Morse Index. American Mathematical Society, Providence (1978)

    Book  Google Scholar 

  11. Dey, T., Juda, M., Kapela, T., Kubica, J., Lipiński, M., Mrozek, M.: Persistent homology of Morse decompositions in combinatorial dynamics. preprint 2018, arXiv:1801.06590v1 [math.AT]

  12. Forman, R.: Combinatorial vector fields and dynamical systems. Mathematische Zeitschrift 228(4), 629–681 (1998)

    Article  MathSciNet  Google Scholar 

  13. Forman, R.: Morse theory for cell complexes. Adv. Math. 134(1), 90–145 (1998)

    Article  MathSciNet  Google Scholar 

  14. Górniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings. Mathematics and its Applications, vol. 495. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  15. Kaczynski, T., Mrozek, M., Wanner, T.: Towards a formal tie between combinatorial and classical vector field dynamics. J. Comput. Dyn. 3(1), 17–50 (2016)

    MathSciNet  MATH  Google Scholar 

  16. McCord, M.C.: Singular homology groups and homotopy groups of finite topological spaces. Duke Math. J. 33, 465–474 (1966)

    Article  MathSciNet  Google Scholar 

  17. Michael, E.: Topologies on spaces of subsets. Trans. Am. Math. Soc 71, 152–182 (1951)

    Article  MathSciNet  Google Scholar 

  18. Mischaikow, K., Mrozek, M.: Chaos in the Lorenz equations: a computer-assisted proof. Bull. Amer. Math. Soc. 32, 66–72 (1995)

    Article  MathSciNet  Google Scholar 

  19. Mrozek, M.: Conley–Morse–Forman theory for combinatorial multivector fields on Lefschetz complexes. Found. Comput. Math. 17(6), 1585–1633 (2017)

    Article  MathSciNet  Google Scholar 

  20. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Boston (1984)

    MATH  Google Scholar 

  21. Quillen, D.: Higher algebraic K-theory, I: Higher K-theories. Lecture Notes Math. 341, 85–147 (1973)

    Article  MathSciNet  Google Scholar 

  22. Quillen, D.: Homotopy properties of the poset of nontrivial p-subgroups of a group. Adv. Math. 28, 101–128 (1978)

    Article  MathSciNet  Google Scholar 

  23. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  24. Roddy, M.S., Schröder, B.S.W.: Isotone relations revisited. Discrete Math. 290, 229–248 (2005)

    Article  MathSciNet  Google Scholar 

  25. Sadofschi Costa, I.: Presentation complexes with the fixed point property. Geometry Topol. 21, 1275–1283 (2017)

    Article  MathSciNet  Google Scholar 

  26. Sander, E., Wanner, T.: Validated saddle-node bifurcations and applications to lattice dynamical systems. SIAM J. Appl. Dyn. Syst. 15, 1690–1733 (2016)

    Article  MathSciNet  Google Scholar 

  27. Smithson, R.E.: Fixed points of order preserving multifunctions. Proc. Am. Math. Soc. 28, 304–310 (1971)

    Article  MathSciNet  Google Scholar 

  28. Smithson, R.E.: Fixed points in partially ordered sets. Pac. J. Math. 45, 363–367 (1973)

    Article  MathSciNet  Google Scholar 

  29. Stong, R.E.: Finite topological spaces. Trans. Am. Math. Soc. 123, 325–340 (1966)

    Article  MathSciNet  Google Scholar 

  30. Vietoris, L.: Über den höheren Zusammenhang kompakter Raume und eine Klasse von zuzammenhangstreuen Abbildungen. Math. Ann. 97, 454–472 (1927)

    Article  MathSciNet  Google Scholar 

  31. Walker, J.W.: Homotopy type and Euler characteristic of partially ordered sets. Eur. J. Comb. 2, 373–384 (1981)

    Article  MathSciNet  Google Scholar 

  32. Walker, J.W.: Isotone relations and the fixed point property for posets. Discrete Math. 48, 275–288 (1984)

    Article  MathSciNet  Google Scholar 

  33. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems. Springer, Berlin (1986)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Ariel Barmak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. A. Barmak: Researcher of CONICET. Partially supported by Grant UBACyT 20020160100081BA.

M. Mrozek: Partially supported by Polish NCN Maestro Grant 2014/14/A/ST1/00453.

T. Wanner: Partially supported by NSF Grant DMS-1407087.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barmak, J.A., Mrozek, M. & Wanner, T. A Lefschetz fixed point theorem for multivalued maps of finite spaces. Math. Z. 294, 1477–1497 (2020). https://doi.org/10.1007/s00209-019-02333-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02333-6

Keywords

Mathematics Subject Classification

Navigation