Skip to main content
Log in

On the nonarchimedean quadratic Lagrange spectra

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study Diophantine approximation in completions of functions fields over finite fields, and in particular in fields of formal Laurent series over finite fields. We introduce a Lagrange spectrum for the approximation by orbits of quadratic irrationals under the modular group. We give nonarchimedean analogs of various well known results in the real case: the closedness and boundedness of the Lagrange spectrum, the existence of a Hall ray, as well as computations of various Hurwitz constants. We use geometric methods of group actions on Bruhat-Tits trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Sect. 4 for a definition.

  2. See [16] for a comparison between the naive height of the algebraic number \(\alpha \) and the above complexity of \(\alpha \) in the Archimedean case.

  3. Actually, Theorem 1.6 of [9] is stated only for \(K= {\mathbb F}_q(Y)\), \(v=v_\infty \) and \(\Gamma =\Gamma _v\), but it has an analogous version for general \((K,v,\Gamma )\) by using [9, Proposition 1.5].

  4. With an arbitrary ordering and \(N=(q^{k+1}-q)^m\).

  5. With an arbitrary order and \(N'=q^{2k+1}-q^k\).

References

  1. Bass, H., Lubotzky, A.: Tree Lattices. Prog. Math. 176, Birkhäuser, (2001)

  2. Berthé, V., Nakada, H.: On continued fraction expansions in positive characteristic: equivalence relations and some metric properties. Expo. Math. 18, 257–284 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grund. math. Wiss. 319, Springer (1999)

  4. Broise-Alamichel,A., Parkkonen, J., Paulin, F.: Equidistribution and Counting Under Equilibrium States in Negative Curvature and Trees. Applications to non-Archimedean Diophantine approximation, Progress in Mathematics, vol. 329. Birkhäuser (2019)

  5. Bugeaud, Y.: On the quadratic Lagrange spectrum. Math. Z. 276, 985–999 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bugeaud, Y.: Nonarchimedean quadratic Lagrange spectra and continued fractions in power series fields. Preprint arXiv:1804.03566

  7. Cusick, T., Flahive, M.: The Markoff and Lagrange Spectra. Math. Surv. Mono. 30, Am. Math. Soc. (1989)

  8. Goss, D.: Basic Structures of Function Field Arithmetic. Erg. Math. Grenz. 35, Springer (1996)

  9. Hersonsky, S., Paulin, F.: On the almost sure spiraling of geodesics in negatively curved manifolds. J. Diff. Geom. 85, 271–314 (2010)

    Article  MathSciNet  Google Scholar 

  10. Khinchin, A.Y.: Continued Fractions. Chicago University Press (1964)

  11. Lasjaunias, A.: A survey of Diophantine approximation in fields of power series. Monat. Math. 130, 211–229 (2000)

    Article  MathSciNet  Google Scholar 

  12. Lin, X.: Quadratic lagrange spectrum: I. Math. Z. 289, 515–533 (2018)

    Article  MathSciNet  Google Scholar 

  13. Parkkonen, J., Paulin, F.: Sur les rayons de Hall en approximation diophantienne. Comptes Rendus Math. 344, 611–614 (2007)

    Article  MathSciNet  Google Scholar 

  14. Parkkonen, J., Paulin, F.: On the closedness of approximation spectra. J. Th. Nb. Bordeaux 21, 701–710 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Parkkonen, J., Paulin, F.: Prescribing the behaviour of geodesics in negative curvature. Geom. Topol. 14, 277–392 (2010)

    Article  MathSciNet  Google Scholar 

  16. Parkkonen, J., Paulin, F.: Spiraling spectra of geodesic lines in negatively curved manifolds. Math. Z. 268, 101–142 (2011). (Erratum: Math. Z. 276, 1215–1216 (2014))

    Article  MathSciNet  Google Scholar 

  17. Paulin, F.: Groupe modulaire, fractions continues et approximation diophantienne en caractéristique \(p\). Geom. Dedic. 95, 65–85 (2002)

    Article  MathSciNet  Google Scholar 

  18. Pejković, T.: Quadratic Lagrange spectrum. Math. Z. 283, 861–869 (2016)

    Article  MathSciNet  Google Scholar 

  19. Poitou, G.: Sur l’approximation des nombres complexes par les nombres des corps imaginaires quadratiques dénués d’idéaux non principaux particulièrement lorsque vaut l’algorithme d’Euclide. Ann. Scien. Ec. Norm. Sup. 70, 199–265 (1953)

    Article  Google Scholar 

  20. Rosen, M.: Number Theory in Function Fields. Grad. Texts Math. 210, Springer (2002)

  21. Schmidt, A.L.: Farey simplices in the space of quaternions. Math. Scand. 24, 31–65 (1969)

    Article  MathSciNet  Google Scholar 

  22. Schmidt, A.L.: Diophantine approximation of complex numbers. Acta Math. 134, 1–85 (1975)

    Article  MathSciNet  Google Scholar 

  23. Schmidt, W.: On continued fractions and diophantine approximation in power series fields. Acta Arith. XCV, 139–166 (2000)

    Article  MathSciNet  Google Scholar 

  24. Serre, J.-P.: Arbres, amalgames, \(\text{SL}_2\). 3ème éd. corr., Astérisque 46, Soc. Math. France, (1983)

Download references

Acknowledgements

This work was supported by the French-Finnish CNRS grant PICS No 6950. We thank a lot Yann Bugeaud for his comments on the first version of this paper, which allowed us to remove the unnecessary assumption of odd characteristic, and gave a negative solution to a conjecture we proposed on a general formula for the Hurwitz constants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Paulin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parkkonen, J., Paulin, F. On the nonarchimedean quadratic Lagrange spectra. Math. Z. 294, 1065–1084 (2020). https://doi.org/10.1007/s00209-019-02300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02300-1

Keywords

Mathematics Subject Classification

Navigation